「イノシトール1,4,5-三リン酸」の版間の差分

 
(同じ利用者による、間の3版が非表示)
89行目: 89行目:
 IP<sub>2</sub>は、[[イノシトールモノホスファターゼ]]([[inositol monophosphatase]]、[[IMPA]])や[[イノシトールポリリン酸1-ホスファターゼ]]([[inositol polyphosphate 1-phosphatase]]、[[INNP1]])によってさらに[[脱リン酸化]]を受けて、[[myo-イノシトール]]まで代謝される。myo-イノシトールは、[[ホスファチジルイノシトール合成酵素]]([[phosphatidylinositol synthetase]]、[[PIS]])によって、小胞体膜で合成される中間体リン脂質の[[CDP-ジアシルグリセロール]]([[CDP-DAG]])と結合することで、再びPI合成のサイクルへ組み込まれる。[[気分安定薬]]としての薬理作用をもつ[[リチウム]]([[lithium]]、Li)<ref name=Harwood2005><pubmed>15558078</pubmed></ref> は、IMPA1やINNP1を阻害し脱リン酸化を抑制するため<ref name=Dollins2021><pubmed>33172890</pubmed></ref> 、myo-イノシトールの供給が抑制される。結果としてPI合成が低下し、IP<sub>3</sub>の産生とその下流のIICRへも影響が及ぶと考えられる。
 IP<sub>2</sub>は、[[イノシトールモノホスファターゼ]]([[inositol monophosphatase]]、[[IMPA]])や[[イノシトールポリリン酸1-ホスファターゼ]]([[inositol polyphosphate 1-phosphatase]]、[[INNP1]])によってさらに[[脱リン酸化]]を受けて、[[myo-イノシトール]]まで代謝される。myo-イノシトールは、[[ホスファチジルイノシトール合成酵素]]([[phosphatidylinositol synthetase]]、[[PIS]])によって、小胞体膜で合成される中間体リン脂質の[[CDP-ジアシルグリセロール]]([[CDP-DAG]])と結合することで、再びPI合成のサイクルへ組み込まれる。[[気分安定薬]]としての薬理作用をもつ[[リチウム]]([[lithium]]、Li)<ref name=Harwood2005><pubmed>15558078</pubmed></ref> は、IMPA1やINNP1を阻害し脱リン酸化を抑制するため<ref name=Dollins2021><pubmed>33172890</pubmed></ref> 、myo-イノシトールの供給が抑制される。結果としてPI合成が低下し、IP<sub>3</sub>の産生とその下流のIICRへも影響が及ぶと考えられる。


 [[IP4|IP<sub>4</sub>]]は、INPP5への親和性が高く競合阻害によってIP<sub>3</sub>の脱リン化を抑制する効果や、IP<sub>3</sub>受容体への[[アゴニスト]]効果などが知られている。また、IP<sub>4</sub>は、IMPAによるイノシトール環6位のリン酸化で[[IP5|IP<sub>5</sub>]]([[イノシトール1,3,4,5,6-五リン酸]][[inositol pentakisphosphate]]、[[Ins(1,3,4,5,6)P5|Ins(1,3,4,5,6)P<sub>5</sub>]])へ、次いでIP<sub>5</sub>が[[イノシトール五リン酸2-キナーゼ]]([[inositol 1,3,4,5,6-pentakisphosphate 2-kinase]]、[[IP5K|IP<sub>5</sub>K]])による6位のリン酸化で[[IP6|IP<sub>6</sub>]]([[イノシトール六リン酸]][[inositol hexakisphosphate]]、[[InsP6|InsP<sub>6</sub>]])へと代謝が進む。IP<sub>5</sub>とIP<sub>6</sub>は、さらに高エネルギーリン酸結合をもつ[[イノシトールピロリン酸]]([[inositol pyrophosphate]]、[[PP-InsP]])を合成する基質となる([[5-PP-IP4|5-PP-IP<sub>4</sub>]]、[[5-PP-IP5|5-PP-IP<sub>5</sub>]]や[[1-PP-IP5|1-PP-IP<sub>5</sub>]]など)<ref name=Chakraborty2011><pubmed>21878680</pubmed></ref><ref name=Irvine2001><pubmed>11331907</pubmed></ref><ref name=Laha2021><pubmed>33422459</pubmed></ref><ref name=Lee2012><pubmed>23050966</pubmed></ref><ref name=Mulugu2007><pubmed>17412958</pubmed></ref>。PP-InsPは、[[クロマチン]]リモデリングや[[遺伝子発現]]、[[膜輸送]]、[[インスリン]]分泌、成長因子・[[サイトカイン]]経路、[[アポトーシス]]、[[ドーパミン]]放出などに関連する事例が報告されている<ref name=Chakraborty2011><pubmed>21878680</pubmed></ref><ref name=Lee2007><pubmed>17412959</pubmed></ref><ref name=Monserrate2010><pubmed>20359876</pubmed></ref> 。
 [[IP4|IP<sub>4</sub>]]は、INPP5への親和性が高く競合阻害によってIP<sub>3</sub>の脱リン化を抑制する効果や、IP<sub>3</sub>受容体への[[アゴニスト]]効果などが知られている。また、IP<sub>4</sub>は、IMPAによるイノシトール環6位のリン酸化で[[IP5|IP<sub>5</sub>]]([[イノシトール1,3,4,5,6-五リン酸]][[inositol pentakisphosphate]]、[[Ins(1,3,4,5,6)P5|Ins(1,3,4,5,6)P<sub>5</sub>]])へ、次いでIP<sub>5</sub>が[[イノシトール五リン酸2-キナーゼ]]([[inositol 1,3,4,5,6-pentakisphosphate 2-kinase]]、[[IP5K|IP<sub>5</sub>K]])による2位のリン酸化で[[IP6|IP<sub>6</sub>]]([[イノシトール六リン酸]][[inositol hexakisphosphate]]、[[InsP6|InsP<sub>6</sub>]])へと代謝が進む。IP<sub>5</sub>とIP<sub>6</sub>は、さらに高エネルギーリン酸結合をもつ[[イノシトールピロリン酸]]([[inositol pyrophosphate]]、[[PP-InsP]])を合成する基質となる([[5-PP-IP4|5-PP-IP<sub>4</sub>]]、[[5-PP-IP5|5-PP-IP<sub>5</sub>]]や[[1-PP-IP5|1-PP-IP<sub>5</sub>]]など)<ref name=Chakraborty2011><pubmed>21878680</pubmed></ref><ref name=Irvine2001><pubmed>11331907</pubmed></ref><ref name=Laha2021><pubmed>33422459</pubmed></ref><ref name=Lee2012><pubmed>23050966</pubmed></ref><ref name=Mulugu2007><pubmed>17412958</pubmed></ref>。PP-InsPは、[[クロマチン]]リモデリングや[[遺伝子発現]]、[[膜輸送]]、[[インスリン]]分泌、成長因子・[[サイトカイン]]経路、[[アポトーシス]]、[[ドーパミン]]放出などに関連する事例が報告されている<ref name=Chakraborty2011><pubmed>21878680</pubmed></ref><ref name=Lee2007><pubmed>17412959</pubmed></ref><ref name=Monserrate2010><pubmed>20359876</pubmed></ref> 。


==IP<sub>3</sub>/Ca<sup>2+</sup>シグナル伝達==
==IP<sub>3</sub>/Ca<sup>2+</sup>シグナル伝達==
141行目: 141行目:
==== IICRの細胞内動態 ====
==== IICRの細胞内動態 ====
[[ファイル:Furuichi IP3 Figure4.png|500px|サムネイル|'''図4. IICRおけるIP<sub>3</sub>/Ca<sup>2+</sup>シグナルの細胞内動態'''<br>
[[ファイル:Furuichi IP3 Figure4.png|500px|サムネイル|'''図4. IICRおけるIP<sub>3</sub>/Ca<sup>2+</sup>シグナルの細胞内動態'''<br>
IICRによる階層的なCa<sup>2+</sup>動態(Ca<sup>2+</sup> blip→Ca<sup>2+</sup> puff→Ca<sup>2+</sup> wave)を図示している(Parker I et al. <ref name=Parker1996><pubmed>8889202</pubmed></ref> と Lock JT et al. <ref name=Lock2019><pubmed>30703557</pubmed></ref> を改変)。図中では、放出Ca<sup>2+</sup>による負の制御で変化する動態は割愛している。(a)は細胞外刺激を受けて細胞膜近傍でPI代謝回転の誘導が開始される段階。(b)は低[IP<sub>3</sub>]、(c)は中程度[IP<sub>3</sub>]、(d)は高[IP<sub>3</sub>]におけるIP<sub>3</sub>/Ca<sup>2+</sup>シグナルの動態を図示している。PI代謝回転が起きた細胞膜付近からIP<sub>3</sub>が細胞内を拡散してできる濃度勾配を青色濃淡で示している。IP<sub>3</sub>R/Ca<sup>2+</sup>放出チャネルによってCa<sup>2+</sup>ストアから放出されるCa<sup>2+</sup>が細胞内を拡散してできる濃度勾配を赤色濃淡で示している。ギャップ結合(GAP junction, GJ)をもつ細胞間では、IP<sub>3</sub>は細胞間シグナルとしてもはたらく。図では、Ca<sup>2+</sup>が細胞内を局所的(local)に、IP<sub>3</sub>がより細胞内を広域(global)に拡散する様子を示しているが、動態は細胞タイプなどによって多様性があり、IP<sub>3</sub>がより局所的なメッセンジャーとしてはたらく細胞もある。(b)低[IP<sub>3</sub>]では、IP<sub>3</sub>Rチャネルの単独とクラスターを問わず、確率論的にIP<sub>3</sub>と結合したIP<sub>3</sub>RチャネルにおいてCa<sup>2+</sup>ブリップが起きる。(c)中程度[IP<sub>3</sub>]では、IP<sub>3</sub>Rチャネルクラスター(アンカーされて不動性)が活性化され、Ca<sup>2+</sup>パフが起きる。また、IICRによって生じるCa<sup>2+</sup>は濃度に依存して二相性にIP<sub>3</sub>Rを制御する:至適[Ca<sup>2+</sup>]濃度を超えた高[Ca<sup>2+</sup>]域ではIP<sub>3</sub>Rを負にフィードバック制御、至適[Ca<sup>2+</sup>]域であれば(一定レベルのIP<sub>3</sub>下で)隣接するIP<sub>3</sub>Rを活性化(正の制御)する。(d)高[IP<sub>3</sub>]では、正のCa<sup>2+</sup>制御により(RyRによるCICR様のモードで)、隣接する一連のIP<sub>3</sub>R集団の連続的な活性化によって細胞内Ca<sup>2+</sup>波(intracellular Ca<sup>2+</sup> wave)が伝播し<ref name=Leybaert2012><pubmed>22811430</pubmed></ref> 、その結果、空間的および速度論的に広域Ca<sup>2+</sup>シグナルの特性が発揮される<ref name=Lock2020><pubmed>32396066</pubmed></ref> 。サイレントIP<sub>3</sub>Rの活性化も示唆されている。高[IP<sub>3</sub>]下でのグローバルなCa<sup>2+</sup>放出には、Ca<sup>2+</sup>パフの他に、ストアに分散して局在するIP<sub>3</sub>R(可動性)による時空間的に持続性のあるCa<sup>2+</sup>上昇が寄与するモデルもある<ref name=Lock2020><pubmed>32396066</pubmed></ref> 。]]
IICRによる階層的なCa<sup>2+</sup>動態(Ca<sup>2+</sup> blip→Ca<sup>2+</sup> puff→Ca<sup>2+</sup> wave)を図示している(Parker I et al. <ref name=Parker1996><pubmed>8889202</pubmed></ref> と Lock JT et al. <ref name=Lock2019><pubmed>30703557</pubmed></ref> を改変)。図中では、放出Ca<sup>2+</sup>による負の制御で変化する動態は割愛している。'''(a)'''は細胞外刺激を受けて細胞膜近傍でPI代謝回転の誘導が開始される段階。'''(b)'''は低[IP<sub>3</sub>]、'''(c)'''は中程度[IP<sub>3</sub>]、'''(d)'''は高[IP<sub>3</sub>]におけるIP<sub>3</sub>/Ca<sup>2+</sup>シグナルの動態を図示している。PI代謝回転が起きた細胞膜付近からIP<sub>3</sub>が細胞内を拡散してできる濃度勾配を青色濃淡で示している。IP<sub>3</sub>R/Ca<sup>2+</sup>放出チャネルによってCa<sup>2+</sup>ストアから放出されるCa<sup>2+</sup>が細胞内を拡散してできる濃度勾配を赤色濃淡で示している。ギャップ結合(GAP junction, GJ)をもつ細胞間では、IP<sub>3</sub>は細胞間シグナルとしてもはたらく。図では、Ca<sup>2+</sup>が細胞内を局所的(local)に、IP<sub>3</sub>がより細胞内を広域(global)に拡散する様子を示しているが、動態は細胞タイプなどによって多様性があり、IP<sub>3</sub>がより局所的なメッセンジャーとしてはたらく細胞もある。'''(b)'''低[IP<sub>3</sub>]では、IP<sub>3</sub>Rチャネルの単独とクラスターを問わず、確率論的にIP<sub>3</sub>と結合したIP<sub>3</sub>RチャネルにおいてCa<sup>2+</sup>ブリップが起きる。'''(c)'''中程度[IP<sub>3</sub>]では、IP<sub>3</sub>Rチャネルクラスター(アンカーされて不動性)が活性化され、Ca<sup>2+</sup>パフが起きる。また、IICRによって生じるCa<sup>2+</sup>は濃度に依存して二相性にIP<sub>3</sub>Rを制御する:至適[Ca<sup>2+</sup>]濃度を超えた高[Ca<sup>2+</sup>]域ではIP<sub>3</sub>Rを負にフィードバック制御、至適[Ca<sup>2+</sup>]域であれば(一定レベルのIP<sub>3</sub>下で)隣接するIP<sub>3</sub>Rを活性化(正の制御)する。'''(d)'''高[IP<sub>3</sub>]では、正のCa<sup>2+</sup>制御により(RyRによるCICR様のモードで)、隣接する一連のIP<sub>3</sub>R集団の連続的な活性化によって細胞内Ca<sup>2+</sup>波(intracellular Ca<sup>2+</sup> wave)が伝播し<ref name=Leybaert2012><pubmed>22811430</pubmed></ref> 、その結果、空間的および速度論的に広域Ca<sup>2+</sup>シグナルの特性が発揮される<ref name=Lock2020><pubmed>32396066</pubmed></ref> 。サイレントIP<sub>3</sub>Rの活性化も示唆されている。高[IP<sub>3</sub>]下でのグローバルなCa<sup>2+</sup>放出には、Ca<sup>2+</sup>パフの他に、ストアに分散して局在するIP<sub>3</sub>R(可動性)による時空間的に持続性のあるCa<sup>2+</sup>上昇が寄与するモデルもある<ref name=Lock2020><pubmed>32396066</pubmed></ref> 。]]
 電位依存性Ca<sup>2+</sup>チャネルや、[[NMDA型グルタミン酸受容体]]のようなリガンド開口性Ca<sup>2+</sup>透過チャネル(ligand-gated Ca<sup>2+</sup> permeable channel)などによる細胞外からのCa<sup>2+</sup>流入(Ca<sup>2+</sup> influx)では、細胞膜のチャネルポア付近を起点としてCa<sup>2+</sup>濃度勾配の局所性が生じ、また[[カルシウムスパイク|Ca<sup>2+</sup>スパイク]]([[calcium spike|Ca<sup>2+</sup> spike]])などの動態が見られたりする。一方、IP<sub>3</sub>によって誘導される細胞内からのCa<sup>2+</sup>放出(Ca<sup>2+</sup> release)では、細胞体から[[神経突起]]や[[スパイン]]などへも連なるCa<sup>2+</sup>ストア(sER)のネットワーク上にIP<sub>3</sub>Rが異なった密度で局在するため、局在部を起点としたCa<sup>2+</sup>濃度の勾配と局所性が生じる。IP<sub>3</sub>Rのチャネル開口にはIP<sub>3</sub>と共にCa<sup>2+</sup>もコアゴニスト(co-agonist)として必要である。
 電位依存性Ca<sup>2+</sup>チャネルや、[[NMDA型グルタミン酸受容体]]のようなリガンド開口性Ca<sup>2+</sup>透過チャネル(ligand-gated Ca<sup>2+</sup> permeable channel)などによる細胞外からのCa<sup>2+</sup>流入(Ca<sup>2+</sup> influx)では、細胞膜のチャネルポア付近を起点としてCa<sup>2+</sup>濃度勾配の局所性が生じ、また[[カルシウムスパイク|Ca<sup>2+</sup>スパイク]]([[calcium spike|Ca<sup>2+</sup> spike]])などの動態が見られたりする。一方、IP<sub>3</sub>によって誘導される細胞内からのCa<sup>2+</sup>放出(Ca<sup>2+</sup> release)では、細胞体から[[神経突起]]や[[スパイン]]などへも連なるCa<sup>2+</sup>ストア(sER)のネットワーク上にIP<sub>3</sub>Rが異なった密度で局在するため、局在部を起点としたCa<sup>2+</sup>濃度の勾配と局所性が生じる。IP<sub>3</sub>Rのチャネル開口にはIP<sub>3</sub>と共にCa<sup>2+</sup>もコアゴニスト(co-agonist)として必要である。


157行目: 157行目:
==IP<sub>3</sub>シグナル関連技術==
==IP<sub>3</sub>シグナル関連技術==
===IP<sub>3</sub>シグナルの検出===
===IP<sub>3</sub>シグナルの検出===
 [[PLC-&delta;]]のイノシトールリン脂質結合に寄与する[[Pleckstrin homologyドメイン|Pleckstrin homology (PH)ドメイン]]や、IP<sub>3</sub>受容体のIP<sub>3</sub>リガンド結合ドメイン<ref name=Yoshikawa1996><pubmed>8663526</pubmed></ref> を利用して、[[蛍光タンパク質]]と融合させた組換えIP<sub>3</sub>センサーが開発されている('''表2''')。
 [[PLC-&delta;]]のPIP<sub>2</sub>結合に寄与する[[Pleckstrin homologyドメイン|Pleckstrin homology (PH)ドメイン]]や、IP<sub>3</sub>受容体のIP<sub>3</sub>リガンド結合ドメイン<ref name=Yoshikawa1996><pubmed>8663526</pubmed></ref> を利用して、[[蛍光タンパク質]]と融合させた組換えIP<sub>3</sub>センサーが開発されている('''表2''')。


{| class="wikitable"
{| class="wikitable"
186行目: 186行目:
 マウスIP<sub>3</sub>R1の高親和性IP<sub>3</sub>リガンド結合コアドメイン<ref name=Yoshikawa1996><pubmed>8663526</pubmed></ref><ref name=Yoshikawa1999><pubmed>10208862</pubmed></ref> を発現させ、細胞質内のIP<sub>3</sub>を結合で吸収することで、IP<sub>3</sub>シグナル伝達の抑制を目的とした組換えタンパク質[[IP3スポンジ|IP<sub>3</sub>スポンジ]]([[IP3 sponge|IP<sub>3</sub> sponge]])<ref name=Uchiyama2002><pubmed>11741904</pubmed></ref> と、これを適用したIP<sub>3</sub> sponge[[トランスジェニックマウス]]<ref name=Tanaka2013><pubmed>23356992</pubmed></ref> が開発されている。
 マウスIP<sub>3</sub>R1の高親和性IP<sub>3</sub>リガンド結合コアドメイン<ref name=Yoshikawa1996><pubmed>8663526</pubmed></ref><ref name=Yoshikawa1999><pubmed>10208862</pubmed></ref> を発現させ、細胞質内のIP<sub>3</sub>を結合で吸収することで、IP<sub>3</sub>シグナル伝達の抑制を目的とした組換えタンパク質[[IP3スポンジ|IP<sub>3</sub>スポンジ]]([[IP3 sponge|IP<sub>3</sub> sponge]])<ref name=Uchiyama2002><pubmed>11741904</pubmed></ref> と、これを適用したIP<sub>3</sub> sponge[[トランスジェニックマウス]]<ref name=Tanaka2013><pubmed>23356992</pubmed></ref> が開発されている。
==関連項目==
* [[ホスファチジルイノシトール]]
* [[ホスホリパーゼC]]
* [[IP3受容体|IP<sub>3</sub>受容体]]
* [[カルシウム]]
* [[滑面小胞体]]
==参考文献==
==参考文献==
<references />
<references />