「カテニン」の版間の差分

ナビゲーションに移動 検索に移動
1,691 バイト追加 、 2020年1月11日 (土)
編集の要約なし
編集の要約なし
編集の要約なし
 
(3人の利用者による、間の29版が非表示)
2行目: 2行目:
<font size="+1">林 華子、[http://researchmap.jp/read0118149/?lang=japanese 米村 重信]</font><br>
<font size="+1">林 華子、[http://researchmap.jp/read0118149/?lang=japanese 米村 重信]</font><br>
''理化学研究所 発生・再生科学総合研究センター 電子顕微鏡解析室''<br>
''理化学研究所 発生・再生科学総合研究センター 電子顕微鏡解析室''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2012年11月28日 原稿完成日:2014年xx月XX日<br>
DOI:<selfdoi /> 原稿受付日:2013年11月28日 原稿完成日:2014年3月20日<br>
担当編集委員:[http://researchmap.jp/Bito/?lang=japanese 尾藤晴彦](東京大学大学院医学系研究科 神経生化学分野)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>


英語名:catenin 独:Catenin
英語名:catenin 独:Catenin 仏:caténine


{{box|text= カテニンは、細胞間接着の必須因子である[[接着分子]][[カドヘリン]]の中の古典的カドヘリンと複合体(カドヘリン・カテニン複合体)を形成するタンパク質の総称である。カドヘリン・カテニン複合体中のカテニンのうち、&alpha;–カテニンは[[細胞骨格]]との連結、&beta;–カテニンはカドヘリンと&alpha;–カテニンとの結合を担っており、どちらもカドヘリンによる細胞接着に必須である。p120–カテニンは[[エンドサイトーシス]]を介してカドヘリンの発現量の調節を行っている。細胞接着とは別の働きとして、&beta;–カテニンは[[Wnt]]/&beta;–カテニンシグナルにおいて重要な役割を果たし、遺伝子発現調節を行う。&alpha;–カテニンも増殖のシグナルを調節する因子として研究が進んでいる。カテニンは脳の形態形成、神経細胞の伸長、[[シナプス]]形成などにも重要な働きをしている。}}
{{box|text= カテニンは、細胞間接着の必須因子である[[接着分子]][[カドヘリン]]の中の古典的カドヘリンと複合体(カドヘリン・カテニン複合体)を形成するタンパク質の総称である。カドヘリン・カテニン複合体中のカテニンのうち、&alpha;–カテニンは[[細胞骨格]]との連結、&beta;–カテニンはカドヘリンと&alpha;–カテニンとの結合を担っており、どちらもカドヘリンによる細胞接着に必須である。p120–カテニンは[[エンドサイトーシス]]を介してカドヘリンの発現量の調節を行っている。細胞接着とは別の働きとして、&beta;–カテニンは[[Wnt]]/&beta;–カテニンシグナルにおいて重要な役割を果たし、遺伝子発現調節を行う。&alpha;–カテニンも増殖のシグナルを調節する因子として研究が進んでいる。カテニンは脳の形態形成、神経細胞の伸長、[[シナプス]]形成などにも重要な働きをしている。}}
13行目: 13行目:
[[ファイル:fig1hh.jpg|right|thumb|350px|'''図1.接着結合におけるカドヘリン・カテニン複合体の模式図''']]
[[ファイル:fig1hh.jpg|right|thumb|350px|'''図1.接着結合におけるカドヘリン・カテニン複合体の模式図''']]
[[ファイル:fig2hh.jpg|right|thumb|350px|'''図2.カテニン分子群の主な機能''']]
[[ファイル:fig2hh.jpg|right|thumb|350px|'''図2.カテニン分子群の主な機能''']]
[[ファイル:Fig3_catenin_structure_HH02.jpg|right|thumb|350px|'''図3.カテニン分子群のタンパク質一次構造''']]
[[ファイル:noukagaku cateninFig3.jpg|right|thumb|350px|'''図3.カテニン分子群のタンパク質一次構造''']]
 カテニンは、古典的カドヘリンの中の[[E-カドヘリン]]との複合体の構成因子の総称である(図1)。
 カテニンは、古典的カドヘリンの中の[[E-カドヘリン]]との複合体の構成因子の総称である(図1)。
===カドヘリン結合タンパク質として===
 接着間接着の必須分子であるE–カドヘリンの抗体を用いた[[wikipedia:ja:免疫沈降反応|免疫沈降反応]]でE–カドヘリンとともに共沈してくる複数のタンパク質がとれ、それらはE–カドヘリンの細胞質ドメインに 結合して複合体を形成していることが小沢らによって初めて示された<ref name=ref1><pubmed> 2788574 </pubmed></ref>。カドヘリンは[[アクチン]]フィラメントを結合している細胞間接着装置、[[wj:接着結合|接着結合]](adherence junction)の形成に必須な接着分子であり、カテニンはカドヘリンと細胞骨格アクチンフィラメントとの連結を担うものと予想され、ラテン語のcatena(chain)からカテニン(catenin)と命名された。このような背景からカテニンの機能解析は、主に細胞間接着に着目して進められてきた。カテニンはカドヘリンを介した十分な接着活性に必須であることが明らかにされ、細胞間接着における接着分子カドヘリンの制御因子としての重要性が提示されている<ref name=ref2><pubmed> 20164302 </pubmed></ref>。


===転写制御因子として===
 E–カドヘリンの抗体を用いた[[wikipedia:ja:免疫沈降反応|免疫沈降反応]]でE–カドヘリンとともに共沈してくる分子量102kDa、88kDa、80kDaのタンパクがとれ、それぞれを&alpha;–カテニン、&beta;–カテニン、&gamma;–カテニンと命名された。それらはE–カドヘリンの細胞質ドメインに 結合して複合体を形成している結果とともに小沢らによって初めて示された<ref name=ref1><pubmed> 2788574 </pubmed></ref> 。カドヘリンは[[アクチン]]フィラメントを結合している細胞間接着装置、[[アドへレンス・ジャンクション]](adherence junction)の形成に必須な接着分子であり、カテニンはカドヘリンと細胞骨格アクチンフィラメントとの結を担うものと予想され、ラテン語のcatena(chain)からカテニン(catenin)と命名されたという背景があり、カテニンの機能解析は、主に細胞間接着に着目して進められてきた。カテニンはカドヘリンを介した十分な接着活性に必須であることが明らかにされ、細胞間接着における接着分子カドヘリンの制御因子としての重要性が提示されている<ref name=ref2><pubmed> 20164302 </pubmed></ref>。
 &beta;–カテニンとp120-カテニンとに相当する分子は、上述した小沢らによるカテニン分子群の発見とは独立してほぼ同時に異なる研究者による異なる研究の中からも発見された経緯がある。[[ショウジョウバエ]]の[[アルマジロ]]遺伝子は胚の[[体節]]形成に異常を示す変異体のスクリーニングから発見され、[[Wntシグナル]]伝達系の[[転写制御因子]]として核内においても機能することが知られていた。のちに[[哺乳類]]のカドヘリン・カテニン複合体中の&beta;–カテニンがアルマジロ遺伝子の[[wj:遺伝子重複#.E3.83.91.E3.83.A9.E3.83.AD.E3.82.B0.E3.81.A8.E3.82.AA.E3.83.BC.E3.82.BD.E3.83.AD.E3.82.B0|オーソログ]]であることが判明し、脊椎動物の&beta;–カテニンにも発生における遺伝子発現において重要な役割があることがわかった<ref name=ref4><pubmed> 22617422 </pubmed></ref>。


=== p120-カテニンの発見===
 &beta;–カテニンとp120-カテニンとに相当する分子は、上述した小沢らによるカテニン分子群の発見とは独立してほぼ同時に異なる研究者による異なる研究の中からも発見された。[[ショウジョウバエ]]の[[アルマジロ]]遺伝子は胚の[[体節]]形成に異常を示す変異体のスクリーニングから発見され、[[Wntシグナル]]伝達系の[[転写制御因子]]として核内においても機能することが知られていた。のちに[[哺乳類]]のカドヘリン・カテニン複合体中の&beta;–カテニンがアルマジロ遺伝子の[[wj:遺伝子重複#.E3.83.91.E3.83.A9.E3.83.AD.E3.82.B0.E3.81.A8.E3.82.AA.E3.83.BC.E3.82.BD.E3.83.AD.E3.82.B0|オーソログ]]であることが判明し、脊椎動物の&beta;–カテニンにも発生における遺伝子発現において重要な役割があることがわかった<ref name=ref4><pubmed> 22617422 </pubmed></ref>。
 p120-カテニンは、[[src]]による形質転換特異的にみられる[[チロシンリン酸化|チロシン残基のリン酸化]]をうける分子としてReynoldsらによって同定されており、アクチン細胞骨格動態への影響が見られていたこともあり、細胞/細胞外基質間接着との関連性についての解析も展開されていった<ref name=ref5><pubmed> 17175391 </pubmed></ref>。そのような流れの中で、細胞接着だけでなく、発生・再生における遺伝子発現制御因子としての重要性が示されている(図2)。&delta;–カテニンは[[家族性アルツハイマー病]]の原因遺伝子である[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref46><pubmed> 9172160 </pubmed></ref>。タンパク質の一次構造レベルでは、&beta;–カテニンとp120-カテニンはアルマジロ反復配列を有するタンパク質として類似性を示し、その配列はさまざまな因子の結合領域として働く(図3)<ref name=ref2><pubmed> 20164302 </pubmed></ref>。
 
 p120-カテニンは、[[src]]による形質転換特異的にみられる[[チロシンリン酸化|チロシン残基のリン酸化]]をうける分子としてReynoldsらによって同定されており、アクチン細胞骨格動態への影響が見られていたこともあり、細胞/細胞外基質間接着との関連性についての解析も展開されていった<ref name=ref5><pubmed> 17175391 </pubmed></ref>。そのような流れの中で、細胞接着だけでなく、発生・再生における遺伝子発現制御因子としての重要性が示されている(図2)。同じp120-カテニンファミリータンパク質である&delta;–カテニンは[[家族性アルツハイマー病]]の原因遺伝子である[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref46><pubmed> 9172160 </pubmed></ref>。タンパク質の一次構造レベルでは、&beta;–カテニンとp120-カテニンはアルマジロ反復配列を有するタンパク質として類似性を示し、その配列はさまざまな因子の結合領域として働く(図3)<ref name=ref2><pubmed> 20164302 </pubmed></ref>。


 このようにカテニン分子は細胞間接着という共通の機能を担う一方で、分子としての性質は多様であり、その性質が各々のカテニン分子の多機能性を生み出していると考えられている。
 このようにカテニン分子は細胞間接着という共通の機能を担う一方で、分子としての性質は多様であり、その性質が各々のカテニン分子の多機能性を生み出していると考えられている。


==種類==
==種類==
 カテニンの主要な種類には、&alpha;–カテニン、&beta;–カテニン、&gamma;–カテニン(プラコグロビンともいう)、&delta;–カテニンがある。それぞれにサブタイプが存在する。
 カテニンの主要な種類には、&alpha;–カテニン、&beta;–カテニン、&gamma;–カテニン(プラコグロビンともいう)、p120/&delta;–カテニンがある。それぞれにサブタイプが存在する。


{| class="wikitable" style="text-align:center"  
{| class="wikitable" style="text-align:center"  
110行目: 108行目:


===構造===
===構造===
 &alpha;–カテニンは、β-カテニンやγ-カテニンに共通してみられるアルマジロ反復配列をもたないといったタンパク質一次構造レベルにおける他のカテニンとの類似性は持ち合わせていない<ref name=ref6><pubmed> 22084304 </pubmed></ref>。アクチン結合タンパク質である[[ビンキュリン]]と塩基配列において相同性(約30%程度)を示す3つの領域(VH1, VH2, VH3)を含んでいる<ref name=ref7><pubmed> 1904011 </pubmed></ref>。最もN末に位置するVH1では、β-カテニンと結合し、VH3はアクチン線維との結合に必要である。また、VH2には、ビンキュリンや[[アファディン]]といった他のアクチン結合タンパク質との結合、加えてビンキュリンの結合阻害領域も存在し、VH2の構造変化がVH2におけるタンパク質結合の制御に重要であると示唆されている。&alpha;–カテニンの立体構造については、VH1やVH2といった断片については&alpha;–カテニン単体やビンキュリンとの結合状態などの条件において精度よい[[X線結晶構造解析]]が行われている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長については&alpha;E–カテニンや&alpha;N–カテニンどちらにおいても十分に高い分解能での結晶構造が得られていないものの、近年においても精力的に解析が続けられている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長の構造が理解できれば、&alpha;–カテニン分子全体としての構造変化の制御についての理解がより進むと期待される。
 &alpha;–カテニンは、タンパク質一次構造レベルにおける他のカテニンとの類似性は持ち合わせていない<ref name=ref6><pubmed> 22084304 </pubmed></ref>。アクチン結合タンパク質である[[ビンキュリン]]と塩基配列において相同性(約30%程度)を示す3つの領域(VH1, VH2, VH3)を含んでいる<ref name=ref7><pubmed> 1904011 </pubmed></ref>。最もN末に位置するVH1でβ-カテニン、VH3でアクチン線維と結合する。また、VH2には、ビンキュリンや[[アファディン]]といった他のアクチン結合タンパク質との結合、加えてビンキュリンの結合阻害領域も存在し、VH2の構造変化がVH2におけるタンパク質結合の制御に重要であると示唆されている。
 
 立体構造については、VH1やVH2といった断片については&alpha;–カテニン単体やビンキュリンとの結合状態などの条件において精度よい[[X線結晶構造解析]]が行われている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長については&alpha;E–カテニンや&alpha;N–カテニンどちらにおいても十分に高い分解能での結晶構造が得られていないものの、近年においても精力的に解析が続けられている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長の構造が理解できれば、&alpha;–カテニン分子全体としての構造変化の制御についての理解がより進むと期待される。


===発現===
===発現===
 カテニンの発現は、多くの組織で認められるものと組織特異的なものとがあり(表)、細胞レベルでは通常、カドヘリンと同様の分布を示す。カテニンはカドヘリンの細胞質領域と結合してカドヘリン・カテニン複合体を作るが、カテニンが結合しうるカドヘリンはE–, N–, VE–カドヘリン等のクラッシックカドヘリンのみである<ref name=ref3><pubmed> 19401831 </pubmed></ref>。
 カテニンの発現は、多くの組織で認められるものと組織特異的なものとがあり(表)、細胞レベルでは通常、カドヘリンと同様の分布を示す。カテニンはカドヘリンの細胞質領域と結合してカドヘリン・カテニン複合体を作るが、カテニンが結合しうるカドヘリンはE–, N–, VE–カドヘリン等の[[カドヘリン#クラシックカドヘリン|クラッシックカドヘリン]]のみである<ref name=ref3><pubmed> 19401831 </pubmed></ref>。


 &alpha;E–カテニンは、[[wikipedia:ja:扁桃腺|扁桃腺]]での発現は認められていないが、体全身にわたる多くの組織に発現している。&alpha;N–カテニンは[[中枢神経系]]には特異的に発現している。発生中の中枢神経系では、[[神経前駆細胞]]には&alpha;E–カテニンが発現しているが、それが神経細胞に[[分化]]すると&alpha;E–カテニンの発現は見られなくなり、&alpha;N–カテニンが発現するようになる<ref name=ref9><pubmed> 1638632 </pubmed></ref>。 &alpha;T–カテニンは[[wj:心臓|心臓]]だけでなく[[wj:結合組織|結合組織]]や脳において高い発現が示されている。細胞レベルでは&alpha;–カテニンは、細胞質タンパク質として存在するが、主には膜タンパク質であるカドヘリンと細胞質タンパク質&beta;–カテニンとともに複合体を形成することにより、隣接する細胞に接触している[[細胞膜]]への局在が顕著である。
 &alpha;E–カテニンは、[[wikipedia:ja:扁桃腺|扁桃腺]]での発現は認められていないが、体全身にわたる多くの組織に発現している。&alpha;N–カテニンは[[中枢神経系]]には特異的に発現している。発生中の中枢神経系では、[[神経前駆細胞]]には&alpha;E–カテニンが発現しているが、それが神経細胞に[[分化]]すると&alpha;E–カテニンの発現は見られなくなり、&alpha;N–カテニンが発現するようになる<ref name=ref9><pubmed> 1638632 </pubmed></ref>。 &alpha;T–カテニンは[[wj:心臓|心臓]]だけでなく[[wj:結合組織|結合組織]]や脳において高い発現が示されている。細胞レベルでは&alpha;–カテニンは、細胞質タンパク質として存在するが、主には膜タンパク質であるカドヘリンと細胞質タンパク質&beta;–カテニンとともに複合体を形成することにより、隣接する細胞に接触している[[細胞膜]]への局在が顕著である。


===機能===
===機能===
 &alpha;–カテニンはカドヘリン接着活性に必須な機能をもつ。&alpha;–カテニンが&beta;–カテニンとアクチン線維とに結合するので、接着結合においてカドヘリン・カテニン複合体とアクチン線維との結合を担うと考えられている<ref name=ref9><pubmed> 1638632 </pubmed></ref><ref  name=ref10><pubmed> 9700171 </pubmed></ref>。&alpha;–カテニンが発現していなければ、カドヘリンが発現していても、[[接着分子]]としてのカドヘリンは実質的に機能せず、接着結合も形成されない。  
 &alpha;–カテニンはカドヘリン接着活性に必須な機能をもつ。&alpha;–カテニンが&beta;–カテニンとアクチン線維とに結合するので、[[接着結合]]においてカドヘリン・カテニン複合体とアクチン線維との結合を担うと考えられている<ref name=ref9><pubmed> 1638632 </pubmed></ref><ref  name=ref10><pubmed> 9700171 </pubmed></ref>。&alpha;–カテニンが発現していなければ、カドヘリンが発現していても、[[接着分子]]としてのカドヘリンは実質的に機能せず、接着結合も形成されない。  


 &alpha;–カテニンは&beta;–カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、ショウジョウバエの形態形成<ref name=ref11><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref11><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;–カテニンはビンキュリン、[[エプリン]]、[[ZO-1]]、[[αアクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref6><pubmed> 22084304 </pubmed></ref>。  
 &alpha;–カテニンは&beta;–カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、ショウジョウバエの形態形成<ref name=ref11><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref11><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;–カテニンはビンキュリン、[[エプリン]]、[[ZO-1]]、[[αアクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref6><pubmed> 22084304 </pubmed></ref>。  
 さらに、&alpha;–カテニンは、接着結合において細胞間の張力を感知・伝達する分子であることが示され、動的な接着結合形成に重要であると考えられる<ref name=ref12><pubmed> 20453849 </pubmed></ref>。  
 さらに、&alpha;–カテニンは、接着結合において細胞間の張力を感知・伝達する分子であることが示され、動的な接着結合形成に重要であると考えられる<ref name=ref12><pubmed> 20453849 </pubmed></ref>。  


 また、&alpha;E–カテニンは、細胞間接着の機能とは別に、[[細胞増殖]]を負に制御することが知られている。細胞増殖の接触阻止に対する調節に重要な[[Hippoシグナル伝達]]においては、転写制御を通じて増殖を抑制する<ref name=ref13><pubmed> 22075429 </pubmed></ref>。後述するように中枢神経系では、&alpha;N–カテニンが神経回路形成を担う[[シナプス形成]]や安定性に必要である。[[大脳皮質]]における[[細胞増殖]]、[[神経突起]]の伸長の制御を行っているという報告もある<ref name=ref14><pubmed> 22535893 </pubmed></ref>。
 また、&alpha;E–カテニンは、細胞間接着の機能とは別に、[[細胞増殖]]を負に制御することが知られている。細胞増殖の接触阻止に対する調節に重要な[[Hippoシグナル伝達]]においては、転写制御を通じて増殖を抑制する<ref name=ref13><pubmed> 22075429 </pubmed></ref>。後述するように中枢神経系では、&alpha;N–カテニンが神経回路形成を担う[[シナプス形成]]や安定性に必要である。[[大脳皮質]]における[[細胞増殖]]、[[神経突起]]の伸長の制御を行っているという報告もある<ref name=ref14><pubmed> 22535893 </pubmed></ref>。


 
==&beta;–カテニン、プラコグロビン==
==&beta;–カテニン、&gamma;–カテニン==
 &beta;–カテニンとプラコグロビンがこのグループに属する。ヒトにおいて両者は高い相同性(76%以上の相同性)をもつ。また、ショウジョウバエのアルマジロとも高い相同性をもつ。
 &beta;–カテニンと&gamma;–カテニンがこのグループに属する。ヒトにおいて両者は高い相同性(76%以上の相同性)をもつ。また、ショウジョウバエのアルマジロとも高い相同性をもつ。


===構造===
===構造===
 &beta;–カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端を除いた大部分を占める。&beta;–カテニンタンパク質の全長の立体構造は、近年、解かれた<ref name=ref15><pubmed> 18334222 </pubmed></ref>。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。
 &beta;–カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端以外の大部分を占める。&beta;–カテニンタンパク質の全長の立体構造が得られている<ref name=ref15><pubmed> 18334222 </pubmed></ref>。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。


 E–カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、&beta;–カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。&alpha;–カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]である[[TCF]]/[[LEF]]に結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、[[APC]]、[[Axin]]もその反復配列へ結合することで、&beta;–カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3β]]との結合も存在し、&beta;–カテニンの分解促進に重要であると考えられている。
 E–カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、&beta;–カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。&alpha;–カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]である[[TCF]]/[[LEF]]に結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、[[APC]]、[[Axin]]もその反復配列へ結合することで、&beta;–カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3β]]との結合も存在し、&beta;–カテニンの分解促進に重要であると考えられている。


 &gamma;–カテニンは&beta;–カテニンの機能を相補しうるが、特徴としてそのN末端部分を介して[[デスモソームカドヘリン]]の細胞質部分に結合する。&gamma;–カテニンも&beta;–カテニンと同様にその中央部分にアルマジロ反復配列をもち、その領域は[[デスモプラーキン]]と呼ばれる[[中間径フィラメント]]結合タンパク質との結合サイトをもつ。このデスモプラーキンとの結合はデスモソームと中間径線維との連結役として機能していると考えられている<ref name=ref17><pubmed> 17854763 </pubmed></ref>。
 プラコグロビンは&beta;–カテニンの機能を相補しうるが、特徴としてそのN末端部分を介して[[デスモソームカドヘリン]]の細胞質部分に結合する。プラコグロビンも&beta;–カテニンと同様にその中央部分にアルマジロ反復配列をもち、その領域は[[デスモプラーキン]]と呼ばれる[[中間径フィラメント]]結合タンパク質との結合サイトをもつ。このデスモプラーキンとの結合はデスモソームと中間径線維との連結役として機能していると考えられている<ref name=ref17><pubmed> 17854763 </pubmed></ref>。


===発現===
===発現===
 &beta;–カテニンは一般的に体全身の多くの組織において発現が認められているが、[[wikipedia:ja:脂肪組織|脂肪組織]]や[[wikipedia:ja:副甲状腺|副甲状腺]]、扁桃腺といって一部の組織では発現が確認されていない。細胞レベルにおいては、&beta;–カテニンは、&alpha;–カテニンと同様、細胞質タンパク質であるため、細胞質に一様な局在も示すが、カドヘリンを介した膜への局在が主である。[[Wnt]]シグナルの活性化状態では、&beta;–カテニンは[[wikipedia:ja:核|核]]への局在が見られるようになる。
 &beta;–カテニンは一般的に体全身の多くの組織において発現が認められているが、[[wikipedia:ja:脂肪組織|脂肪組織]]や[[wikipedia:ja:副甲状腺|副甲状腺]]、扁桃腺といって一部の組織では発現が確認されていない。細胞レベルにおいては、&beta;–カテニンは、&alpha;–カテニンと同様、細胞質タンパク質であるため、細胞質に一様な局在も示すが、カドヘリンを介した膜への局在が主である。[[Wnt]]シグナルの活性化状態では、&beta;–カテニンは[[wikipedia:ja:核|核]]への局在が見られるようになる。


 &gamma;–カテニンも、&beta;–カテニンと同様に多くの組織では発現が確認されているが、[[wikipedia:ja:副腎|副腎]]や、[[wikipedia:ja:耳|耳]](組織学的な単語をお使いください)、[[wikipedia:ja:唾液腺|唾液腺]]、[[wikipedia:ja:脾臓|脾臓]]、[[wikipedia:ja:臍帯|臍帯]]、[[wikipedia:ja:血管|血管]]といった一部の組織には発現が確認されていない。細胞レベルでは、デスモソームへの局在が顕著である。
 プラコグロビンも、&beta;–カテニンと同様に多くの組織では発現が確認されているが、[[wikipedia:ja:副腎|副腎]]や、[[wikipedia:ja:唾液腺|唾液腺]]、[[wikipedia:ja:脾臓|脾臓]]、[[wikipedia:ja:臍帯|臍帯]]、[[wikipedia:ja:血管|血管]]といった一部の組織には発現が確認されていない。細胞レベルでは、デスモソームへの局在が顕著である。


===機能===
===機能===
146行目: 146行目:
 細胞間接着における&beta;–カテニンの役割は、カドヘリンと&alpha;–カテニンとの連結にある<ref name=ref4><pubmed> 22617422 </pubmed></ref>。&alpha;–カテニンの結合は生化学的に確認されており、E–カドヘリンとともに接着結合に局在するという細胞レベルの知見からも支持されている<ref name=ref16><pubmed> 15112230 </pubmed></ref>。
 細胞間接着における&beta;–カテニンの役割は、カドヘリンと&alpha;–カテニンとの連結にある<ref name=ref4><pubmed> 22617422 </pubmed></ref>。&alpha;–カテニンの結合は生化学的に確認されており、E–カドヘリンとともに接着結合に局在するという細胞レベルの知見からも支持されている<ref name=ref16><pubmed> 15112230 </pubmed></ref>。


 F9細胞では&beta;–カテニンをノックアウトしても&gamma;–カテニンの発現が増加し、カドヘリンによる接着能は維持されるが、&gamma;–カテニンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;–カテニンとを融合したタンパク質を発現させれば、&beta;–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着において&gamma;–カテニンが&beta;–カテニンの機能を補完する役割を担っており、また&beta;–カテニンの機能は、&alpha;–カテニンをカドヘリンに結合させることであることを示している。
 F9細胞では&beta;–カテニンをノックアウトしてもプラコグロビンの発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;–カテニンとを融合したタンパク質を発現させれば、&beta;–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンが&beta;–カテニンの機能を補完する役割を担っており、また&beta;–カテニンの機能は、&alpha;–カテニンをカドヘリンに結合させることであることを示している。


 細胞接着において&gamma;–カテニンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。&gamma;–カテニンのC末端領域の欠損した培養細胞では、細胞のラテラル面(コメント:ききなれない言い方ですので、他の言い回しはないでしょうか?側面?接触面?)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、&gamma;–カテニンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。&gamma;–カテニンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在してラテラル面(?)に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在した状態でラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
====転写制御====
====転写制御====
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。Wntシグナルの活性化によりGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、[[TCF]]/[[LEF]]と複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。


 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/&beta;-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、&gamma;–カテニンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;–カテニンシグナル伝達の抑制が同時にみられていることから、実際には&gamma;–カテニンは&beta;–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;–カテニンシグナル伝達の制御を実現していると解釈できる。
 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/&beta;-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael, CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プラコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプラコグロビンは&beta;–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;–カテニンシグナル伝達の制御を実現していると解釈できる。


==p120–カテニン==
==p120–カテニン==
158行目: 158行目:


===構造===
===構造===
 p120–カテニンファミリータンパク質の中央領域に見られる10個のアルマジロ反復配列は、カドヘリンの細胞膜に近接した細胞質領域と結合する<ref name=ref22><pubmed> 15489912 </pubmed></ref>。p120–カテニンのアルマジロ反復配列に隣接するN末端側の領域は、[[スレオニン]]残基のリン酸化サイトが複数存在している。そのさらに隣に位置するN末端には[[コイルドコイル]]配列が存在している。加えて、&delta;–カテニンは、そのC末端に[[PDZドメインタンパク質]]との結合領域を有す。その一例として、[[グルタミン酸受容体結合タンパク質]] ([[glutamate receptor interacting protein]]; [[GRIP]])やシナプス後膜直下に形成される[[シナプス後部肥厚]]([[postsynaptic density]]: [[PSD]])に局在化する[[PSD-95]]などがそこに結合する<ref name=ref14><pubmed> 22535893 </pubmed></ref>。
 p120–カテニンファミリータンパク質の中央領域に見られる10個のアルマジロ反復配列は、カドヘリンの細胞膜に近接した細胞質領域と結合する<ref name=ref22><pubmed> 15489912 </pubmed></ref>。p120–カテニンのアルマジロ反復配列に隣接するN末端側の領域は、[[スレオニン]]残基のリン酸化サイトが複数存在している。そのさらに隣に位置するN末端には[[コイルドコイル]]配列が存在している。加えて、&delta;–カテニンは、そのC末端に[[PDZドメインタンパク質]]との結合領域を有す。その一例として、[[グルタミン酸受容体結合タンパク質]] ([[glutamate receptor interacting protein]]; [[GRIP]])やシナプス後膜直下に形成される[[シナプス後肥厚]]([[postsynaptic density]]: [[PSD]])に局在化する[[PSD-95]]などがそこに結合する<ref name=ref14><pubmed> 22535893 </pubmed></ref>。


===発現===
===発現===
165行目: 165行目:
===機能===
===機能===
====細胞膜上カドヘリン量の維持====
====細胞膜上カドヘリン量の維持====
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つあるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれない<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つであるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。


=====細胞膜直下アクチン線維動態の制御=====
====細胞膜直下アクチン線維動態の制御====
 また、p120–カテニンは細胞膜直下のアクチン線維動態も制御している。p120–カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref27><pubmed>17194753</pubmed></ref>。細胞質におけるRhoAとの結合はp120–カテニンのリン酸化に依存している<ref name=ref27><pubmed>17194753</pubmed></ref>が、先に述べたように、p120–カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120–カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。[[ラット]]海馬由来の培養神経細胞においても、上述したp120–カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、神経樹状突起伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref28><pubmed> 17936606 </pubmed></ref>。  
 また、p120–カテニンは細胞膜直下の[[アクチン]]線維動態も制御している。p120–カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref27><pubmed>17194753</pubmed></ref>。細胞質におけるRhoAとの結合はp120–カテニンのリン酸化に依存している<ref name=ref27><pubmed>17194753</pubmed></ref>が、先に述べたように、p120–カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120–カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。[[ラット]]海馬由来の培養神経細胞においても、上述したp120–カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、神経樹状突起伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref28><pubmed> 17936606 </pubmed></ref>。


====接着結合と微小管との架橋====
====接着結合と微小管との架橋====
177行目: 177行目:


====シナプスでの機能====
====シナプスでの機能====
 [[マウス]]の脳組織における免疫沈降実験から、&delta;–カテニンはN–カドヘリンと&beta;–カテニンと結合することが確認され、樹状突起のシナプスに強く観察される。シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref32><pubmed> 9971746 </pubmed></ref>。
 [[マウス]]の脳組織における[[免疫沈降]]実験から、&delta;–カテニンはN–カドヘリンと&beta;–カテニンと結合することが確認され、樹状突起のシナプスに強く観察される。シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref32><pubmed> 9971746 </pubmed></ref>。


  [[ラット]]神経組織の初代培養細胞では、&delta;–カテニンはGSK3&beta;、&beta;–カテニンと複合体を形成し、&beta;–カテニンの分解を促進させる機能も有する<ref name=ref33><pubmed> 20623542 </pubmed></ref>。  
  [[ラット]]神経組織の初代培養細胞では、&delta;–カテニンはGSK3&beta;、&beta;–カテニンと複合体を形成し、&beta;–カテニンの分解を促進させる機能も有する<ref name=ref33><pubmed> 20623542 </pubmed></ref>。  


 シナプス後細胞では、[[グルタミン酸受容体結合タンパク質]][[GRIP]]やシナプスシナプス後部肥厚部分に局在化する[[PDS-95]]との結合が報告されているが、成熟したシナプスにおいてのみ&delta;–カテニンはそれらと局在化する。一方で、シナプスの形成初期では、&delta;–カテニンの代わりにp120–カテニンがシナプス構造部分に局在する。このようにシナプスの形成過程の中で時期特異的に異なるカテニンが働いて、シグナル伝達の制御をしうる成熟したシナプスが構築されると考えられる<ref name=ref34><pubmed> 15752981 </pubmed></ref>。
 シナプス後細胞では、[[グルタミン酸受容体結合タンパク質]][[GRIP]]やシナプス後肥厚部分に局在化する[[PDS-95]]との結合が報告されているが、成熟したシナプスにおいてのみ&delta;–カテニンはそれらと局在化する。一方で、シナプスの形成初期では、&delta;–カテニンの代わりにp120–カテニンがシナプス構造部分に局在する。このようにシナプスの形成過程の中で時期特異的に異なるカテニンが働いて、シグナル伝達の制御をしうる成熟したシナプスが構築されると考えられる<ref name=ref34><pubmed> 15752981 </pubmed></ref>。


==脳におけるカテニンの機能==
==脳におけるカテニンの機能==
187行目: 187行目:


===神経発生===
===神経発生===
 神経発生時には、神経管の[[脳室側]]で未分化細胞が分裂し、表層方向へと移動し、適材適所に細胞が多種のニューロンへと分化し、その種類ごとに住みわけるように脳室面から表層方向に層構造を形成する。ニューロンはネットワークを形成し、神経活動を伝達する。&alpha;N–カテニンの欠損マウスでは小脳や海馬において層構造の形成がうまくいかない<ref name=ref35><pubmed> 12089526 </pubmed></ref>。
 神経発生時には、神経管の[[脳室]]側で未分化細胞が分裂し、表層方向へと移動し、適材適所に細胞が多種のニューロンへと分化し、その種類ごとに住みわけるように脳室面から表層方向に層構造を形成する。ニューロンはネットワークを形成し、神経活動を伝達する。&alpha;N–カテニンの欠損マウスでは小脳や海馬において層構造の形成がうまくいかない<ref name=ref35><pubmed> 12089526 </pubmed></ref>。


 中枢神経系の幹/前駆細胞特異的に&alpha;E–カテニンを欠失させると、細胞間接着が形成できず、さらに[[細胞極性]]がなくなる。加えて、細胞数の増加、[[細胞周期]]の短縮、[[アポトーシス]]の減少がみられ、最終的な[[大脳皮質]]の厚みや大きさが増す。このノックアウト細胞では、[[大脳皮質の発生]]過程において細胞増殖を促進する[[ソニックヘッジホッグ]]シグナル伝達経路が強く活性化している。ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E–カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E–カテニンの接着構造の制御自体だけでなく、複数のシグナル伝達系を仲介するという新たな機能であると議論されている<ref name=ref45><pubmed> 16543460 </pubmed></ref>。(コメント:この段落はこちらに持ってきました)
 中枢神経系の幹/前駆細胞特異的に&alpha;E–カテニンを欠失させると、細胞間接着が形成できず、さらに[[細胞極性]]がなくなる。加えて、細胞数の増加、[[細胞周期]]の短縮、[[アポトーシス]]の減少がみられ、最終的な[[大脳皮質]]の厚みや大きさが増す。このノックアウト細胞では、[[大脳皮質の発生]]過程において細胞増殖を促進する[[ソニックヘッジホッグ]]シグナル伝達経路が強く活性化している。ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E–カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E–カテニンが細胞間接着構造への制御を担うだけでなく、複数のシグナル伝達系を仲介した新たな機能をもつと議論されている<ref name=ref45><pubmed> 16543460 </pubmed></ref>


 [[ゼブラフィッシュ]]の中脳では、Wnt/&beta;–カテニンシグナル伝達系が[[中脳視蓋]]のサイズの制御に寄与していることが示されている。[[LEF]]による転写が活性化すると、中脳領域での神経前駆細胞の増殖が促進する。その転写活性の制御が神経前駆細胞の増殖制御を介して中脳視蓋の大きさに影響をもたらすのではないかと考えられている<ref name=ref36><pubmed> 22373574 </pubmed></ref>。
 [[ゼブラフィッシュ]]の中脳では、Wnt/&beta;–カテニンシグナル伝達系が[[中脳視蓋]]のサイズの制御に寄与していることが示されている。[[LEF]]による転写が活性化すると、中脳領域での神経前駆細胞の増殖が促進する。その転写活性の制御が神経前駆細胞の増殖制御を介して中脳視蓋の大きさに影響をもたらすのではないかと考えられている<ref name=ref36><pubmed> 22373574 </pubmed></ref>。


 成体の海馬にも、[[神経幹細胞]]が存在しており、自己複製する一方で、神経細胞などへ分化することで新たな神経細胞となる。Wnt/&beta;–カテニンシグナル伝達系は、海馬では神経幹細胞が神経前駆細胞へと分化するために必須であることがマウスやラットを用いた解析から示されている<ref name=ref37><pubmed> 19701198 </pubmed></ref>。海馬の神経幹細胞では、幹細胞から神経細胞への分化を決定する遺伝子の発現を制御するDNA配列があり、[[転写因子]][[Sox2]]がそのDNA配列を認識することによりその下流にある遺伝子発現が抑制され、未分化のままを維持できる。しかし、隣接する[[アストロサイト]]細胞で産生されたWntにより幹細胞のWnt/&beta;–カテニンシグナル伝達系が活性化すると、&beta;–カテニンが核へ移行し、TCF/LEFとの複合体として、Sox2の認識配列とオーバーラップした領域に結合するようになる。その結果として、その下流の遺伝子発現が活性化され、神経前駆細胞へと分化が誘導される。
 成体の海馬にも、[[神経幹細胞]]が存在しており、自己複製する一方で、神経細胞などへ分化することで新たな神経細胞となる。Wnt/&beta;–カテニンシグナル伝達系は、海馬では神経幹細胞が[[神経前駆細胞]]へと分化するために必須であることがマウスやラットを用いた解析から示されている<ref name=ref37><pubmed> 19701198 </pubmed></ref>。海馬の神経幹細胞では、幹細胞から神経細胞への分化を決定する遺伝子の発現を制御するDNA配列があり、[[転写因子]][[Sox2]]がそのDNA配列を認識することによりその下流にある遺伝子発現が抑制され、未分化のままを維持できる。しかし、隣接する[[アストロサイト]]細胞で産生されたWntにより幹細胞のWnt/&beta;–カテニンシグナル伝達系が活性化すると、&beta;–カテニンが核へ移行し、TCF/LEFとの複合体として、[[Sox2]]の認識配列とオーバーラップした領域に結合するようになる。その結果として、その下流の遺伝子発現が活性化され、神経前駆細胞へと分化が誘導される。


===成長円錐の伸長===
===成長円錐の伸長===
203行目: 203行目:
 スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な[[糸状仮足]]様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、茸型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]を阻害することで、[[活動電位]]を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスから&alpha;N–カテニンが消失する。&alpha;N–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref name=ref40><pubmed> 12123610 </pubmed></ref><ref name=ref41><pubmed> 14622577 </pubmed></ref><ref name=ref42><pubmed> 15034585 </pubmed></ref>。このように神経活動によってシナプス接合部においてカドヘリン・カテニン、そして細胞骨格の連結が制御を受け、その結果としてシナプス構造やその安定性の変化、そしてシナプス伝達の制御に寄与しているという考えが提唱されている<ref name=ref39><pubmed> 15817378 </pubmed></ref>。
 スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な[[糸状仮足]]様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、茸型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]を阻害することで、[[活動電位]]を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスから&alpha;N–カテニンが消失する。&alpha;N–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref name=ref40><pubmed> 12123610 </pubmed></ref><ref name=ref41><pubmed> 14622577 </pubmed></ref><ref name=ref42><pubmed> 15034585 </pubmed></ref>。このように神経活動によってシナプス接合部においてカドヘリン・カテニン、そして細胞骨格の連結が制御を受け、その結果としてシナプス構造やその安定性の変化、そしてシナプス伝達の制御に寄与しているという考えが提唱されている<ref name=ref39><pubmed> 15817378 </pubmed></ref>。


 変異型&beta;–カテニンを発現させたマウスの海馬から分離した神経培養細胞では、活性化された[[シナプス前膜]]直下に集積している[[シナプス小胞]]の数の維持に&beta;–カテニンが重要であることが示された。ここでは、&alpha;–カテニンとの結合領域は必要ないので、&beta;–カテニンが細胞接着構造を制御することだけに寄与しているのではないと考えられる<ref name=ref41><pubmed> 14622577 </pubmed></ref>。加えて、細胞接着やWnt/&beta;–カテニンシグナル伝達経路とは別に、&beta;–カテニンの新たなシグナル伝達経路が神経情報伝達において利用されていることが、[[神経初代培養細胞]]の解析から明らかになった。[[NMDA型グルタミン受容体]]が活性化すると、Wntとは関係なく、&beta;–カテニンが切断され、その後はWnt/&beta;–カテニンシグナル伝達経路と同様に核で機能する<ref name=ref43><pubmed> 17270735 </pubmed></ref>。p120–カテニンによるRhoA活性の抑制は、樹状突起上のスパインの密度の維持に寄与する<ref name=ref44><pubmed> 16815331 </pubmed></ref>。
 変異型&beta;–カテニンを発現させたマウスの海馬から分離した神経培養細胞では、活性化された[[シナプス前膜]]直下に集積している[[シナプス小胞]]の数の維持に&beta;–カテニンが重要であることが示された。ここでは、&alpha;–カテニンとの結合領域は必要ないので、&beta;–カテニンが細胞接着構造を制御することだけに寄与しているのではないと考えられる<ref name=ref41><pubmed> 14622577 </pubmed></ref>。加えて、細胞接着やWnt/&beta;–カテニンシグナル伝達経路とは別に、&beta;–カテニンの新たなシグナル伝達経路が神経情報伝達において利用されていることが、[[神経初代培養細胞]]の解析から明らかになった。[[NMDA型グルタミン酸受容体]]が活性化すると、Wntとは関係なく、&beta;–カテニンが切断され、その後はWnt/&beta;–カテニンシグナル伝達経路と同様に核で機能する<ref name=ref43><pubmed> 17270735 </pubmed></ref>。p120–カテニンによるRhoA活性の抑制は、樹状突起上のスパインの密度の維持に寄与する<ref name=ref44><pubmed> 16815331 </pubmed></ref>。


 一方で、N–カドヘリンとp120–カテニンとの複合体の構造解析によって明らかになった両者の結合に重要なアミノ酸残基についての点変異体を発現させた海馬の神経培養細胞では、p120–カテニンがN–カドヘリンと結合できず、スパインの密度やスパインの幅が減少する<ref name=ref14><pubmed> 22535893</pubmed></ref>。&delta;–カテニンはスパインのサイズや数、形態の維持に必要である<ref name=ref22><pubmed>15489912</pubmed></ref>。
 一方で、N–カドヘリンとp120–カテニンとの複合体の構造解析によって明らかになった両者の結合に重要なアミノ酸残基についての点変異体を発現させた海馬の神経培養細胞では、p120–カテニンがN–カドヘリンと結合できず、スパインの密度やスパインの幅が減少する<ref name=ref14><pubmed> 22535893</pubmed></ref>。&delta;–カテニンはスパインのサイズや数、形態の維持に必要である<ref name=ref22><pubmed>15489912</pubmed></ref>。


==疾患との関わり==
==疾患との関わり==
===神経関連疾患===
===神経関連疾患===
 もともと、&delta;–カテニンは[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref46 />。[[wj:染色体|染色体]]上の&delta;–カテニン遺伝子座を含む領域の欠損は、[[精神発達遅滞]]を起こすヒト遺伝病の一つである[[ネコ鳴き症候群]]患者に多くみられ、その後の&delta;–カテニンのノックアウトマウスの解析から、&delta;–カテニンはその症候群でみられる精神発達遅滞との関連が示唆された。そのノックアウトマウスでは、[[視覚]]からの刺激に対する[[視覚野]]の応答に障害がみられ、海馬の[[短期増強]]と[[長期増強]]の異常を示す。このノックアウトマウスの発生期のシナプス形成には異常はみられず、生存可能であるが、10週齢になると、大脳皮質のシナプスの密度の減少やシナプスの維持の欠落が見られるようになる。その分子機構はまだ不明であるが、&delta;–カテニンは、シナプスのスパイン構造の維持で機能することで、正常な認知機能やそれに繋がりうる精神発達に寄与すると示唆されている<ref name=ref47><pubmed> 19403811 </pubmed></ref> 。  
 もともと、&delta;–カテニンは[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref46 />。[[wj:染色体|染色体]]上の&delta;–カテニン遺伝子座を含む領域の欠損は、[[精神発達遅滞]]を起こすヒト遺伝病の一つである[[ネコ鳴き症候群]]患者に多くみられ、その後の&delta;–カテニンのノックアウトマウスの解析から、&delta;–カテニンはその症候群でみられる精神発達遅滞との関連が示唆された。そのノックアウトマウスでは、[[視覚]]からの刺激に対する[[視覚野]]の応答に障害がみられ、海馬の[[短期増強]]と[[長期増強]]の異常を示す。このノックアウトマウスの発生期のシナプス形成には異常はみられず、生存可能であるが、10週齢になると、大脳皮質のシナプスの密度の減少やシナプスの維持の欠落が見られるようになる。その分子機構はまだ不明であるが、&delta;–カテニンは、シナプスのスパイン構造の維持で機能することで、正常な認知機能やそれに繋がりうる精神発達に寄与すると示唆されている<ref name=ref47><pubmed> 19403811 </pubmed></ref> 。  
214行目: 215行目:


===悪性腫瘍===
===悪性腫瘍===
 カテニン全般的には、神経以外の組織における疾患よりもガンとの関連性がよく議論されている。
 カテニン全般的には、神経以外の組織における疾患よりもガンとの関連性がよく議論されている<ref name=ref49><pubmed> 17084354 </pubmed></ref><ref name=ref50><pubmed> 17084354 </pubmed></ref>。


====&alpha;–カテニン====
====&alpha;–カテニン====
第5染色体の欠損をもつ骨髄白血病患者からの細胞HL–60の解析から、&alpha;E–カテニン遺伝子座の[[メチル化]]と[[ヒストン脱アセチル化]]により、その発現が抑制されないままになることがみられている。この&alpha;E–カテニンの発現が維持されたままの細胞では、細胞増殖の低下やアポトーシスによる細胞死が見られている。また、[[wikipedia:ja:アフリカ系アメリカ人|アフリカ系アメリカ人]]の[[wikipedia:ja:乳がん|乳がん]]患者においても&alpha;E–カテニン遺伝子の中に変異が見つかっている。 
 [[肺]]や[[卵巣]]、[[前立腺]]におけるがん細胞では、&alpha;-カテニン遺伝子の変異が見つかっている。また、[[皮膚]]由来の[[wj:扁平上皮|扁平上皮]]組織の悪性腫瘍の患者の半数以上(40検体のうち33検体)では&alpha;-カテニンに対する[[抗体染色]]が減少もしくは消失することが報告されている。
 
 加えて、&alpha;-カテニンが発現していない表皮組織の細胞は高い運動性を示したり、移植した状況下では&alpha;-カテニンが発現していないと、それらの細胞では扁平上皮組織の悪性腫瘍細胞と類似した現象として捉えられている[[wj:上皮間葉転換|上皮間葉転換]]が起こっていしまうことも報告されている。
 
 第5染色体の欠損をもつ[[wj:骨髄性白血病|骨髄性白血病]]患者からの細胞[[wj:HL–60|HL–60]]の解析から、&alpha;E–カテニン遺伝子座の[[メチル化]]と[[ヒストン脱アセチル化]]により、その発現が抑制されないままになることがみられている。この&alpha;E–カテニンの発現が維持されたままの細胞では、細胞増殖の低下やアポトーシスによる細胞死が見られている。また、[[wikipedia:ja:アフリカ系アメリカ人|アフリカ系アメリカ人]]の[[wikipedia:ja:乳がん|乳がん]]患者においても&alpha;E–カテニン遺伝子の中に変異が見つかっている。 


====&beta;–カテニン====
====&beta;–カテニン====
[[wikipedia:ja:結腸直腸ガン|結腸直腸ガン]]や[[wikipedia:ja:悪性黒色腫|悪性黒色腫]]などの患者の組織では&beta;–カテニンの遺伝子座にいくつかの異なる変異が見つかっている。これらの変異は、[[APC]]やGSK3&beta;による&beta;–カテニンのリン酸化を介した&beta;–カテニン/LEFによる遺伝子発現の制御不全を引き起こし、細胞の異常な増殖、つまりはがん化へと繋がっているのではないかと推察されている。
 [[wj:家族性大腸がん|家族性大腸がん]]の原因遺伝子である[[がん抑制遺伝子]][[APC]]は、&beta;-カテニンの分解に関わる。それゆえ、大腸がんの細胞では、APCの変異とともに、&beta;-カテニンの分解経路の阻害されており、その結果&beta;-カテニン遺伝子カテニンの核内局在の増加が観察されている。また、後述するように、&beta;-カテニンのリン酸化とがん化が相関していることを合わせると、&beta;-カテニンの分解の制御の乱れががん化を引き起こすと考えられている。しかし、先に挙げた&alpha;-カテニンの免疫染色の減少・消失が見られたほとんどのがん細胞では&beta;-カテニンの核内局在の増加は見られないため、&alpha;-カテニンは、&beta;-カテニンの分解の制御とは独立してがん化抑制に寄与しているという解釈となっている<ref name=ref49><pubmed> 17084354 </pubmed></ref>。
 
 [[wikipedia:ja:結腸直腸ガン|結腸直腸ガン]]や[[wikipedia:ja:悪性黒色腫|悪性黒色腫]]などの患者の組織では&beta;–カテニンの遺伝子座にいくつかの異なる変異が見つかっている。これらの変異は、[[APC]]やGSK3&beta;による&beta;–カテニンのリン酸化を介した&beta;–カテニン/LEFによる遺伝子発現の制御不全を引き起こし、細胞の異常な増殖、つまりはがん化へと繋がっているのではないかと推察されている。


==== p120–カテニン====
==== p120–カテニン====
226行目: 233行目:


===その他===
===その他===
 ヒトの&gamma;–カテニン遺伝子、JUPの変異は、アミノ酸残基の挿入や欠損といった異なる様式の変異がいくつかの疾患患者で発見された。その一つは、[[wikipedia:ja:掌蹠角皮症|掌蹠角皮症]]患者において、JUP遺伝子内でアミノ酸残基の欠損によるフレームシフトが起こっており、そのタンパク質として完成することができていないことが、[[ウェスタンブロット]]により示されている。
 ヒトのプラコグロビン遺伝子、JUPの変異は、アミノ酸残基の挿入や欠損といった異なる様式の変異がいくつかの疾患患者で発見された。その一つは、[[wikipedia:ja:掌蹠角皮症|掌蹠角皮症]]患者において、JUP遺伝子内でアミノ酸残基の欠損によるフレームシフトが起こっており、そのタンパク質として完成することができていないことが、[[ウェスタンブロット]]により示されている。


 催[[wikipedia:ja:不整脈|不整脈]]性の右室[[wj:心筋症|心筋症]](皮膚への異常は伴わない)を患った人を含むドイツ人の家族において、&gamma;–カテニン遺伝子の変異が見つけられた。その変異は、&gamma;–カテニンのN末端から39番目の場所に余計に[[セリン]]残基が挿入されているものだと予想され、さらにこの変異がある病理組織の[[電子顕微鏡]]像では、[[デスモソーム]]のサイズや数の減少が見つかった。&gamma;–カテニン遺伝子内の挿入変異により、デスモソームの構造の制御がうまくいっていない可能性が示唆された他、Wntシグナルを介した経路の制御を阻害している可能性などが他のいくつかの研究結果をもって議論されている。
 催[[wikipedia:ja:不整脈|不整脈]]性の右室[[wj:心筋症|心筋症]](皮膚への異常は伴わない)を患った人を含むドイツ人の家族において、プラコグロビン遺伝子の変異が見つけられた。その変異は、プラコグロビンのN末端から39番目の場所に余計に[[セリン]]残基が挿入されているものだと予想され、さらにこの変異がある病理組織の[[電子顕微鏡]]像では、[[デスモソーム]]のサイズや数の減少が見つかった。プラコグロビン遺伝子内の挿入変異により、デスモソームの構造の制御がうまくいっていない可能性が示唆された他、Wntシグナルを介した経路の制御を阻害している可能性などが他のいくつかの研究結果をもって議論されている。


==関連項目==
==関連項目==

案内メニュー