「カテニン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の6版が非表示)
2行目: 2行目:
<font size="+1">林 華子、[http://researchmap.jp/read0118149/?lang=japanese 米村 重信]</font><br>
<font size="+1">林 華子、[http://researchmap.jp/read0118149/?lang=japanese 米村 重信]</font><br>
''理化学研究所 発生・再生科学総合研究センター 電子顕微鏡解析室''<br>
''理化学研究所 発生・再生科学総合研究センター 電子顕微鏡解析室''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年11月28日 原稿完成日:2014年xx月XX日<br>
DOI:<selfdoi /> 原稿受付日:2013年11月28日 原稿完成日:2014年3月20日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>
108行目: 108行目:


===構造===
===構造===
 &alpha;–カテニンは、タンパク質一次構造レベルにおける他のカテニンとの類似性は持ち合わせていない<ref name=ref6><pubmed> 22084304 </pubmed></ref>。アクチン結合タンパク質である[[ビンキュリン]]と塩基配列において相同性(約30%程度)を示す3つの領域(VH1, VH2, VH3)を含んでいる<ref name=ref7><pubmed> 1904011 </pubmed></ref>。最もN末に位置するVH1でβ-カテニン、VH3はアクチン線維との結合する。また、VH2には、ビンキュリンや[[アファディン]]といった他のアクチン結合タンパク質との結合、加えてビンキュリンの結合阻害領域も存在し、VH2の構造変化がVH2におけるタンパク質結合の制御に重要であると示唆されている。&alpha;–カテニンの立体構造については、VH1やVH2といった断片については&alpha;–カテニン単体やビンキュリンとの結合状態などの条件において精度よい[[X線結晶構造解析]]が行われている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長については&alpha;E–カテニンや&alpha;N–カテニンどちらにおいても十分に高い分解能での結晶構造が得られていないものの、近年においても精力的に解析が続けられている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長の構造が理解できれば、&alpha;–カテニン分子全体としての構造変化の制御についての理解がより進むと期待される。
 &alpha;–カテニンは、タンパク質一次構造レベルにおける他のカテニンとの類似性は持ち合わせていない<ref name=ref6><pubmed> 22084304 </pubmed></ref>。アクチン結合タンパク質である[[ビンキュリン]]と塩基配列において相同性(約30%程度)を示す3つの領域(VH1, VH2, VH3)を含んでいる<ref name=ref7><pubmed> 1904011 </pubmed></ref>。最もN末に位置するVH1でβ-カテニン、VH3でアクチン線維と結合する。また、VH2には、ビンキュリンや[[アファディン]]といった他のアクチン結合タンパク質との結合、加えてビンキュリンの結合阻害領域も存在し、VH2の構造変化がVH2におけるタンパク質結合の制御に重要であると示唆されている。
 
 立体構造については、VH1やVH2といった断片については&alpha;–カテニン単体やビンキュリンとの結合状態などの条件において精度よい[[X線結晶構造解析]]が行われている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長については&alpha;E–カテニンや&alpha;N–カテニンどちらにおいても十分に高い分解能での結晶構造が得られていないものの、近年においても精力的に解析が続けられている<ref name=ref8><pubmed> 23589308 </pubmed></ref>。全長の構造が理解できれば、&alpha;–カテニン分子全体としての構造変化の制御についての理解がより進むと期待される。


===発現===
===発現===
116行目: 118行目:


===機能===
===機能===
 &alpha;–カテニンはカドヘリン接着活性に必須な機能をもつ。&alpha;–カテニンが&beta;–カテニンとアクチン線維とに結合するので、接着結合においてカドヘリン・カテニン複合体とアクチン線維との結合を担うと考えられている<ref name=ref9><pubmed> 1638632 </pubmed></ref><ref  name=ref10><pubmed> 9700171 </pubmed></ref>。&alpha;–カテニンが発現していなければ、カドヘリンが発現していても、[[接着分子]]としてのカドヘリンは実質的に機能せず、接着結合も形成されない。  
 &alpha;–カテニンはカドヘリン接着活性に必須な機能をもつ。&alpha;–カテニンが&beta;–カテニンとアクチン線維とに結合するので、[[接着結合]]においてカドヘリン・カテニン複合体とアクチン線維との結合を担うと考えられている<ref name=ref9><pubmed> 1638632 </pubmed></ref><ref  name=ref10><pubmed> 9700171 </pubmed></ref>。&alpha;–カテニンが発現していなければ、カドヘリンが発現していても、[[接着分子]]としてのカドヘリンは実質的に機能せず、接着結合も形成されない。  


 &alpha;–カテニンは&beta;–カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、ショウジョウバエの形態形成<ref name=ref11><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref11><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;–カテニンはビンキュリン、[[エプリン]]、[[ZO-1]]、[[αアクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref6><pubmed> 22084304 </pubmed></ref>。  
 &alpha;–カテニンは&beta;–カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、ショウジョウバエの形態形成<ref name=ref11><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref11><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;–カテニンはビンキュリン、[[エプリン]]、[[ZO-1]]、[[αアクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref6><pubmed> 22084304 </pubmed></ref>。  
148行目: 150行目:
 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在した状態でラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在した状態でラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
====転写制御====
====転写制御====
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。Wntシグナルの活性化によりGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、[[TCF]]/[[LEF]]と複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。


 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/&beta;-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael, CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プラコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプラコグロビンは&beta;–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;–カテニンシグナル伝達の制御を実現していると解釈できる。
 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/&beta;-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael, CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プラコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプラコグロビンは&beta;–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;–カテニンシグナル伝達の制御を実現していると解釈できる。
201行目: 203行目:
 スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な[[糸状仮足]]様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、茸型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]を阻害することで、[[活動電位]]を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスから&alpha;N–カテニンが消失する。&alpha;N–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref name=ref40><pubmed> 12123610 </pubmed></ref><ref name=ref41><pubmed> 14622577 </pubmed></ref><ref name=ref42><pubmed> 15034585 </pubmed></ref>。このように神経活動によってシナプス接合部においてカドヘリン・カテニン、そして細胞骨格の連結が制御を受け、その結果としてシナプス構造やその安定性の変化、そしてシナプス伝達の制御に寄与しているという考えが提唱されている<ref name=ref39><pubmed> 15817378 </pubmed></ref>。
 スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な[[糸状仮足]]様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、茸型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]を阻害することで、[[活動電位]]を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスから&alpha;N–カテニンが消失する。&alpha;N–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref name=ref40><pubmed> 12123610 </pubmed></ref><ref name=ref41><pubmed> 14622577 </pubmed></ref><ref name=ref42><pubmed> 15034585 </pubmed></ref>。このように神経活動によってシナプス接合部においてカドヘリン・カテニン、そして細胞骨格の連結が制御を受け、その結果としてシナプス構造やその安定性の変化、そしてシナプス伝達の制御に寄与しているという考えが提唱されている<ref name=ref39><pubmed> 15817378 </pubmed></ref>。


 変異型&beta;–カテニンを発現させたマウスの海馬から分離した神経培養細胞では、活性化された[[シナプス前膜]]直下に集積している[[シナプス小胞]]の数の維持に&beta;–カテニンが重要であることが示された。ここでは、&alpha;–カテニンとの結合領域は必要ないので、&beta;–カテニンが細胞接着構造を制御することだけに寄与しているのではないと考えられる<ref name=ref41><pubmed> 14622577 </pubmed></ref>。加えて、細胞接着やWnt/&beta;–カテニンシグナル伝達経路とは別に、&beta;–カテニンの新たなシグナル伝達経路が神経情報伝達において利用されていることが、[[神経初代培養細胞]]の解析から明らかになった。[[NMDA型グルタミン受容体]]が活性化すると、Wntとは関係なく、&beta;–カテニンが切断され、その後はWnt/&beta;–カテニンシグナル伝達経路と同様に核で機能する<ref name=ref43><pubmed> 17270735 </pubmed></ref>。p120–カテニンによるRhoA活性の抑制は、樹状突起上のスパインの密度の維持に寄与する<ref name=ref44><pubmed> 16815331 </pubmed></ref>。
 変異型&beta;–カテニンを発現させたマウスの海馬から分離した神経培養細胞では、活性化された[[シナプス前膜]]直下に集積している[[シナプス小胞]]の数の維持に&beta;–カテニンが重要であることが示された。ここでは、&alpha;–カテニンとの結合領域は必要ないので、&beta;–カテニンが細胞接着構造を制御することだけに寄与しているのではないと考えられる<ref name=ref41><pubmed> 14622577 </pubmed></ref>。加えて、細胞接着やWnt/&beta;–カテニンシグナル伝達経路とは別に、&beta;–カテニンの新たなシグナル伝達経路が神経情報伝達において利用されていることが、[[神経初代培養細胞]]の解析から明らかになった。[[NMDA型グルタミン酸受容体]]が活性化すると、Wntとは関係なく、&beta;–カテニンが切断され、その後はWnt/&beta;–カテニンシグナル伝達経路と同様に核で機能する<ref name=ref43><pubmed> 17270735 </pubmed></ref>。p120–カテニンによるRhoA活性の抑制は、樹状突起上のスパインの密度の維持に寄与する<ref name=ref44><pubmed> 16815331 </pubmed></ref>。


 一方で、N–カドヘリンとp120–カテニンとの複合体の構造解析によって明らかになった両者の結合に重要なアミノ酸残基についての点変異体を発現させた海馬の神経培養細胞では、p120–カテニンがN–カドヘリンと結合できず、スパインの密度やスパインの幅が減少する<ref name=ref14><pubmed> 22535893</pubmed></ref>。&delta;–カテニンはスパインのサイズや数、形態の維持に必要である<ref name=ref22><pubmed>15489912</pubmed></ref>。
 一方で、N–カドヘリンとp120–カテニンとの複合体の構造解析によって明らかになった両者の結合に重要なアミノ酸残基についての点変異体を発現させた海馬の神経培養細胞では、p120–カテニンがN–カドヘリンと結合できず、スパインの密度やスパインの幅が減少する<ref name=ref14><pubmed> 22535893</pubmed></ref>。&delta;–カテニンはスパインのサイズや数、形態の維持に必要である<ref name=ref22><pubmed>15489912</pubmed></ref>。
216行目: 218行目:


====&alpha;–カテニン====
====&alpha;–カテニン====
 [[肺]]や[[卵巣]]、[[前立腺]]におけるがん細胞では、&alpha;-カテニン遺伝子の変異が見つかっている。また、[[皮膚]]由来の[[wj:扁平上皮|扁平上皮]]組織の悪性腫瘍の患者の半数以上(40検体のうち33検体)では&alpha;-カテニンに対する抗体染色が減少もしくは消失することが報告されている。
 [[肺]]や[[卵巣]]、[[前立腺]]におけるがん細胞では、&alpha;-カテニン遺伝子の変異が見つかっている。また、[[皮膚]]由来の[[wj:扁平上皮|扁平上皮]]組織の悪性腫瘍の患者の半数以上(40検体のうち33検体)では&alpha;-カテニンに対する[[抗体染色]]が減少もしくは消失することが報告されている。


 加えて、&alpha;-カテニンが発現していない表皮組織の細胞は高い運動性を示したり、移植した状況下では&alpha;-カテニンが発現していないと、それらの細胞では扁平上皮組織の悪性腫瘍細胞と類似した現象として捉えられている[[wj:上皮間葉転換|上皮間葉転換]]が起こっていしまうことも報告されている。
 加えて、&alpha;-カテニンが発現していない表皮組織の細胞は高い運動性を示したり、移植した状況下では&alpha;-カテニンが発現していないと、それらの細胞では扁平上皮組織の悪性腫瘍細胞と類似した現象として捉えられている[[wj:上皮間葉転換|上皮間葉転換]]が起こっていしまうことも報告されている。

案内メニュー