「カルモジュリン」の版間の差分

93行目: 93行目:
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。


 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通してのシナプス可塑性や記憶・学習の制御に関して不可欠な役割を果たしている。例えば、海馬CA1領域における長期増強や長期抑圧はNMDA受容体の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。カルモジュリンの脳内での主要なターゲットであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する。また、CaMKIIは12量体を作っており、活性化に伴って隣接するキナーゼサブユニットの間で286番目のスレオニンがリン酸化することで、Ca<sup>2+</sup>/カルモジュリンとのアフィニティが高くなるとともに、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる。
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通してのシナプス可塑性や記憶・学習の制御に関して不可欠な役割を果たしている。例えば、海馬CA1領域における長期増強や長期抑圧はNMDA受容体の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。カルモジュリンの脳内での主要なターゲットであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+</sup>上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する。また、CaMKIIは12量体を作っており、活性化に伴って隣接するキナーゼサブユニットの間で286番目のスレオニンがリン酸化することで、Ca<sup>2+</sup>/カルモジュリンとのアフィニティが高くなるとともに、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる。
CaMKIIは海馬のシェーファー側枝からCA1錐体細胞への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαのノックアウトマウスや点変異導入マウスでは海馬依存的な空間学習に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。同様にカルモジュリンによって活性化されるアデニル酸シクラーゼ1、8やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や遺伝子改変動物実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴うスパインの構造的可塑性の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>やアクチン細胞骨格の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>やCREBを介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている。
CaMKIIは海馬のシェーファー側枝からCA1錐体細胞への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαのノックアウトマウスや点変異導入マウスでは海馬依存的な空間学習に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。同様にカルモジュリンによって活性化されるアデニル酸シクラーゼ1、8やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や遺伝子改変動物実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴うスパインの構造的可塑性の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>やアクチン細胞骨格の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>やCREBを介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている。


88

回編集