「カルモジュリン」の版間の差分

編集の要約なし
37行目: 37行目:


==機能==
==機能==
 カルモジュリンは脳内で10~100 &micro;mol/lの濃度で発現しており<ref><pubmed> 15803158 </pubmed></ref>、細胞内で上昇したCa<sup>2+</sup>と結合し、Ca<sup>2+</sup>バッファーとして働くのに加え、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する(表1)。
 カルモジュリンは脳内で10~100 &micro;mol/lの濃度で発現しており<ref><pubmed> 15803158 </pubmed></ref>、細胞内で上昇したCa<sup>2+</sup>と結合し、Ca<sup>2+</sup>バッファーとして働くのに加え、様々なカルモジュリン結合タンパク質と結合して生理機能を発揮する('''表1''')。
 カルモジュリンの主要な機能は、細胞内のCa<sup>2+</sup>濃度の変化を感知し、カルモジュリン結合タンパクの機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。カルモジュリン結合タンパク質の多くはCa<sup>2+</sup>依存性がありCa<sup>2+</sup>/カルモジュリンと結合するが、Ca<sup>2+</sup>と結合していないカルモジュリンと結合するタンパク質や、Ca<sup>2+</sup>非依存的に結合するタンパク質も存在する。


 Ca<sup>2+</sup>に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa<sup>2+</sup>に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa<sup>2+</sup>親和性をpH7.5, 100mM KCl, 25℃の条件下で測定した場合には、それぞれ1.5~100μM、0.4~10μMである<ref><pubmed> 1902469</pubmed></ref>。Ca<sup>2+</sup>依存的な結合の場合、カルモジュリンがCa<sup>2+</sup>と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、1-14モチーフ([[ミオシン軽鎖キナーゼ]]([[myosin light-chain kinase]], [[MLCK]])、[[カルシニューリン]]、[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]]([[CaMKIV]])、[[一酸化窒素合成酵素]]([[NOS]]))、1-10モチーフ([[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]]([[CaMKII]])、[[シナプシン]]、[[熱ショックタンパク質70/90]])、1-16モチーフ([[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]], [[CaMKK]])などに分類される<ref><pubmed> 9141499</pubmed></ref><ref><pubmed>23601118 </pubmed></ref><ref><pubmed> 25998729 </pubmed></ref>。一方、Ca<sup>2+</sup>非依存的な結合タンパク質は、IQモチーフ(IQXXXRGXXXR)を持つことが多い。
=== カルモジュリンにより制御されるエフェクタータンパク質 ===
 カルモジュリンの主要な機能は、細胞内のCa<sup>2+</sup>濃度の変化を感知し、カルモジュリン結合タンパク質の機能制御を通じて、細胞機能を制御(活性化、抑制)することであり、その具体的な効果はターゲットとなる下流のタンパク質によって様々に異なる。多くはCa<sup>2+</sup>依存性がありCa<sup>2+</sup>/カルモジュリンと結合するが、Ca<sup>2+</sup>と結合していないカルモジュリンと結合するタンパク質や、Ca<sup>2+</sup>非依存的に結合するタンパク質も存在する。
 
 Ca<sup>2+</sup>に対する親和性の違いから、C末側ドメインはN末側ドメインに比べCa<sup>2+</sup>に対する親和性が高く、in vitroでトリプシン処理により得られたN末側/C末側ドメインのCa<sup>2+</sup>親和性をpH 7.5, 100 mM KCl, 25 ℃の条件下で測定した場合には、それぞれ1.5~100 μM、0.4~10 μMである<ref><pubmed> 1902469</pubmed></ref>。Ca<sup>2+</sup>依存的な結合の場合、カルモジュリンがCa<sup>2+</sup>と結合することで、疎水性領域が露出し、ターゲットとなるタンパク質のカルモジュリン結合ドメインにある疎水性のアミノ酸残基と相互作用する。この疎水性アミノ酸残基の位置によって、幾つかのもシーフに分類される<ref><pubmed> 9141499</pubmed></ref><ref><pubmed>23601118 </pubmed></ref><ref><pubmed> 25998729 </pubmed></ref>。
 
* 1-14モチーフ:([[ミオシン軽鎖キナーゼ]]([[myosin light-chain kinase]], [[MLCK]])、[[カルシニューリン]]、[[Ca2+/カルモジュリン依存性タンパク質キナーゼIV|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼIV]]([[CaMKIV]])、[[一酸化窒素合成酵素]]([[NOS]])
* 1-10モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼII|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]]([[CaMKII]])、[[シナプシン]]、[[熱ショックタンパク質70/90]]
* 1-16モチーフ:([[Ca2+/カルモジュリン依存性タンパク質キナーゼキナーゼ|Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼキナーゼ]], [[CaMKK]]
* IQモチーフ:Ca<sup>2+</sup>非依存的な結合タンパク質に多い。コンセンサス配列はIQXXXRGXXXRである。


 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。


{|class="wikitable"
{|class="wikitable"
90行目: 96行目:
|colspan="2"|[[一酸化窒素合成酵素]]||<ref><pubmed> 1689048 </pubmed></ref><ref><pubmed>2370855 </pubmed></ref>
|colspan="2"|[[一酸化窒素合成酵素]]||<ref><pubmed> 1689048 </pubmed></ref><ref><pubmed>2370855 </pubmed></ref>
|-
|-
|colspan="2"|[[熱ショックタンパク質70/90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|colspan="2"|[[熱ショックタンパク質70]]/[[熱ショックタンパク質90|90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|}
|}
===神経系での機能===
==== 神経回路の発達 ====
 [[神経突起]]形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、[[軸索]]伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達に関わる。
 例えば、発生期に神経細胞が軸索を伸展し標的となる細胞に投射して神経回路を構築する際には、軸索の先端部は[[成長円錐]]を形成し、細胞外の[[軸索ガイダンス分子]]などのシグナルに応じて誘引されたり反発されたりすることで、その伸展する方向を制御している。[[アフリカツメガエル]]の[[脊髄]]神経細胞や[[ニワトリ]]の[[後根神経節]]細胞を用いた実験などから、ガイダンス分子として[[ネトリン1]]<ref><pubmed>  10638760 </pubmed></ref><ref><pubmed>  15758951  </pubmed></ref>やSEMA3A<ref><pubmed>  18549782 </pubmed></ref><ref><pubmed>  18536712 </pubmed></ref>をはじめさまざま知られており、これらは受容体を介して局所的なCa<sup>2+</sup>上昇を引き起こし、その濃度や局在によってカルモジュリンは異なるターゲットを活性化し、成長円錐の誘引や反発をコントロールしている。
==== シナプス可塑性、記憶・学習 ====
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通しての[[シナプス可塑性]]や[[記憶]]・[[学習]]の制御に関して不可欠な役割を果たしている。
 海馬CA1領域における[[長期増強]]や[[長期抑圧]]は[[NMDA型グルタミン酸受容体]]の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。中でも、カルモジュリンの脳内での主要なターゲットのひとつであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+</sup>上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する<ref><pubmed>12045104 </pubmed></ref>。また、CaMKIIは12量体を作っており<ref><pubmed>6315430  </pubmed></ref><ref><pubmed>21884935 </pubmed></ref>、活性化に伴って隣接するキナーゼサブユニットの間で286番目の[[スレオニン]]が[[リン酸化]]することで、Ca<sup>2+</sup>/カルモジュリンとの親和性が高くなるとともに<ref><pubmed>1317063  </pubmed></ref>、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる<ref><pubmed>3006921  </pubmed></ref><ref><pubmed>3467320  </pubmed></ref>。CaMKIIは海馬の[[シェーファー側枝]]から[[CA1]][[錐体細胞]]への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαの[[ノックアウトマウス]]や[[点変異]]導入マウスでは海馬依存的な[[空間学習]]に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。
 
 
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通してのシナプス可塑性や記憶・学習の制御に関して不可欠な役割を果たしている。例えば、海馬CA1領域における長期増強や長期抑圧はNMDA受容体の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。中でも、カルモジュリンの脳内での主要なターゲットのひとつであるCaMKIIは、Ca<sup>2+</sup>濃度の低い基底状態ではカルモジュリン結合ドメインとオーバーラップしている自己抑制ドメインによってそのキナーゼ活性が低く抑えられているが、Ca<sup>2+</sup>上昇に伴ってCa<sup>2+</sup>/カルモジュリンと結合し、コンフォメーションが変化することでこの自己抑制がはずれ、活性化する<ref><pubmed>12045104 </pubmed></ref>。また、CaMKIIは12量体を作っており<ref><pubmed>6315430  </pubmed></ref><ref><pubmed>21884935 </pubmed></ref>、活性化に伴って隣接するキナーゼサブユニットの間で286番目のスレオニンがリン酸化することで、Ca<sup>2+</sup>/カルモジュリンとのアフィニティが高くなるとともに<ref><pubmed>1317063  </pubmed></ref>、Ca<sup>2+</sup>/カルモジュリンが解離した後も部分的な活性を持続する"Autonomous"な状態を保持することができる<ref><pubmed>3006921  </pubmed></ref><ref><pubmed>3467320  </pubmed></ref>。CaMKIIは海馬のシェーファー側枝からCA1錐体細胞への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαのノックアウトマウスや点変異導入マウスでは海馬依存的な空間学習に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。
 同様にカルモジュリンによって活性化される[[アデニル酸シクラーゼ1]]、[[アデニル酸シクラーゼ8|8]]やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や[[遺伝子改変動物]]実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。
 
 同様にカルモジュリンによって活性化されるアデニル酸シクラーゼ1、8やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や遺伝子改変動物実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴うスパインの構造的可塑性の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>やアクチン細胞骨格の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>やCREBを介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、数あるカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて上昇したCa<sup>2+</sup>の時間的・空間的拡がりに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている<ref><pubmed> 12154335 </pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>。


 また、カルモジュリンは記憶・学習といった成体における脳機能だけではなく、神経突起形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、軸索伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達にも関わっている。例えば、発生期に神経細胞が軸索を伸展し標的となる細胞に投射して神経回路を構築する際には、軸索の先端部は成長円錐を形成し、細胞外の軸索ガイダンス分子などのシグナルに応じて誘引されたり反発されたりすることで、その伸展する方向を制御している。アフリカツメガエルの脊髄神経細胞やニワトリの後根神経節細胞を用いた実験などから、ガイダンス分子としてNetrin1<ref><pubmed> 10638760 </pubmed></ref><ref><pubmed>  15758951  </pubmed></ref>やSEMA3A<ref><pubmed>   18549782 </pubmed></ref><ref><pubmed> 18536712 </pubmed></ref>をはじめさまざま知られており、これらは受容体を介して局所的なCa<sup>2+</sup>上昇を引き起こし、その濃度や局在によってカルモジュリンは異なるターゲットを活性化し、成長円錐の誘引や反発をコントロールしている。
 こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴う[[スパイン]]の[[構造的可塑性]]の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>や[[アクチン]][[細胞骨格]]の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>や[[CREB]]を介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、数あるカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、Ca<sup>2+</sup>流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて上昇したCa<sup>2+</sup>の時間的・空間的拡がりに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている<ref><pubmed> 12154335 </pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>。


==サブファミリー==
==サブファミリー==