「コネクトーム」の版間の差分

47行目: 47行目:


これらの遺伝学的なツールの利用には、トランスジェニック動物、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
これらの遺伝学的なツールの利用には、トランスジェニック動物、ノックイン動物、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能であるアデノ随伴ウイルス(AAV)は、広く用いられている。一方、CRISPR・CAS9によるゲノム編集技術の発達とともに、このような遺伝学的ツールは広汎に用いられるようになると予想される。
特に、遺伝的なリポーターとして、電顕でその発現を観察できる方法は、2)の全体を再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される。とりわけ、最近開発されたARTEMIS法は、ペルオキシダーゼ活性を持つレポーター遺伝子を発現した神経細胞を、高品質な電顕画像の中で識別することができる<ref>Reconstruction of genetically identified neurons imaged by serial-section electron microscopy</ref>。
特に、遺伝的なリポーターとして、電顕でその発現を観察できる方法は、2)の全体を再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される<ref><pubmed>25362474</pubmed></ref>。とりわけ、最近開発されたARTEMIS法は、ペルオキシダーゼ活性を持つレポーター遺伝子を発現した神経細胞を、高品質な電顕画像の中で識別することができる<ref>Reconstruction of genetically identified neurons imaged by serial-section electron microscopy</ref>。
また、シナプス結合しているパートナーを調べるために、シナプス結合したパートナー細胞同士のシナプス結合を分割GFPで検出するGRASPという方法が開発され、センチュウ、[[ショウジョウバエ]]などで利用されている<ref><pubmed>22221865</pubmed></ref><ref><pubmed>22355283</pubmed></ref>。また、GRASP法の他にも、その感度の低さを補うことが可能なsplit HRP法が開発され、哺乳類の神経系でも利用できることが示された<ref><pubmed>27240195</pubmed></ref>。<br />
また、シナプス結合しているパートナーを調べるために、シナプス結合したパートナー細胞同士のシナプス結合を分割GFPで検出するGRASPという方法が開発され、センチュウ、[[ショウジョウバエ]]などで利用されている<ref><pubmed>22221865</pubmed></ref><ref><pubmed>22355283</pubmed></ref>。また、GRASP法の他にも、その感度の低さを補うことが可能なsplit HRP法が開発され、哺乳類の神経系でも利用できることが示された<ref><pubmed>27240195</pubmed></ref>。<br />