「コフィリン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
{{Infobox protein family
| Symbol = Cofilin_ADF
| Name = Cofilin_ADF
| image = PDB 1f7s EBI.jpg
| width =
| caption = crystal structure of adf1 from arabidopsis thaliana
| Pfam = PF00241
| Pfam_clan = CL0092
| InterPro = IPR002108
| SMART = ADF
| PROSITE = PDOC00297
| MEROPS =
| SCOP = 2prf
| TCDB =
| OPM family =
| OPM protein =
| CAZy =
| CDD =
}}
英語名:cofilin  
英語名:cofilin  
== 概要  ==


 コフィリンは、1980年代にニワトリやブタの脳の抽出液から[[アクチン]]線維の脱重合を促進する蛋白質として同定、精製された<ref><pubmed>6893966</pubmed></ref><ref><pubmed>6894753</pubmed></ref><ref name="ref1"><pubmed>6509022</pubmed></ref>。コフィリンは、単量体アクチン(G-アクチン)、アクチン線維(F-アクチン)に結合し、F-アクチンを切断・脱重合する活性をもつ20 kDaのアクチン結合蛋白質である。生存に必須であり、酵母からヒトまで高度に保存されている。コフィリンは、F-アクチンのターンオーバーを促進することで細胞のアクチン骨格のダイナミクスを生み出す働きを持ち、細胞内の基本的なアクチン骨格の制御因子の一つである<ref name="ref2"><pubmed>17338919</pubmed></ref><ref name="ref3"><pubmed>20133134</pubmed></ref><ref name="ref4"><pubmed>21850706</pubmed></ref>。また、様々な細胞内シグナル分子によって活性が制御されアクチン骨格の時空間的な再構築に寄与する<ref name="ref3" /><ref name="ref5"><pubmed>23153585 </pubmed></ref>。  
 コフィリンは、1980年代にニワトリやブタの脳の抽出液から[[アクチン]]線維の脱重合を促進する蛋白質として同定、精製された<ref><pubmed>6893966</pubmed></ref><ref><pubmed>6894753</pubmed></ref><ref name="ref1"><pubmed>6509022</pubmed></ref>。コフィリンは、単量体アクチン(G-アクチン)、アクチン線維(F-アクチン)に結合し、F-アクチンを切断・脱重合する活性をもつ20 kDaのアクチン結合蛋白質である。生存に必須であり、酵母からヒトまで高度に保存されている。コフィリンは、F-アクチンのターンオーバーを促進することで細胞のアクチン骨格のダイナミクスを生み出す働きを持ち、細胞内の基本的なアクチン骨格の制御因子の一つである<ref name="ref2"><pubmed>17338919</pubmed></ref><ref name="ref3"><pubmed>20133134</pubmed></ref><ref name="ref4"><pubmed>21850706</pubmed></ref>。また、様々な細胞内シグナル分子によって活性が制御されアクチン骨格の時空間的な再構築に寄与する<ref name="ref3" /><ref name="ref5"><pubmed>23153585 </pubmed></ref>。  
22行目: 40行目:
== アクチン骨格再構築おける機能  ==
== アクチン骨格再構築おける機能  ==


 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。コフィリンは、試験管内の実験により、F-アクチン, G-アクチンどちらにも結合する。また、ADP結合型のアクチンに対してより高い親和性を持ち、ADPの加水分解とリン酸の放出が進んだ古いF-アクチンを切断・脱重合する<ref name="ref7"><pubmed>9087445</pubmed></ref><ref name="ref6" />。F-アクチンの脱重合と切断は異なる作用で、F-アクチンのマイナス端からアクチンの脱重合する活性とF-アクチンの側面に結合し切断する作用があると考えられている<ref name="ref7" /><ref><pubmed>9265645</pubmed></ref><ref><pubmed>11285275</pubmed></ref>。細胞内で主に起こるF-アクチンの切断・脱重合の作用機序については未だ議論があるが、コフィリンの結合によりF-アクチンのらせん構造がよりねじれた状態になりアクチン分子間の結合が不安定となり切断されやすくなると考えられる<ref name="ref8"><pubmed>17018289</pubmed></ref>。また、コフィリンの濃度がある程度以上濃くなるとF-アクチン全ての結合部位にコフィリンが結合しF-アクチンが逆に安定化する。コフィリンの濃度が高い状態ではコフィリンがアクチンの核化を促進するモデルも提唱されている<ref name="ref8" />。コフィリンは、細胞内のG-アクチンに結合し、ATP/ADP交換を阻害して重合させないようにする隔離作用もあると考えられている<ref><pubmed>8399167</pubmed></ref><ref><pubmed>8399168</pubmed></ref>。コフィリンのアクチン脱重合・切断活性に対する制御は、ホスファチジルイノシトール4,5ビスリン酸(PIP2)との結合によるアクチンへの結合阻害、3番目のセリン残基のリン酸化によるアクチンへの結合阻害、Actin interacting protein 1 (Aip1),アデニル酸シクラーゼ結合蛋白質(CAP)との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />。PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的なPhospholipase C (PLC)の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[蛋白質リン酸化酵素]]としてLIMキナーゼファミリー(LIMK1, LIMK2, TESK1, TESK2)が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>。LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1, LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1, TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />。これに対して、特異的なコフィリンの[[蛋白質脱リン酸化酵素]]としてSlingshotファミリー(Slingshot-1, Slingshot-2, Slingshot-3)が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外にprotein phosphatase 1 (PP1), protein phosphatase 2A(PP2A)、ハロ酸デヒドロゲナーゼの一つで蛋白質脱リン酸化酵素として働くChronophinが脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />。コフィリンのリン酸化制御は、進化的にショウジョウバエ以降で保存されており、線虫、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。LIMキナーゼは、Rhoファミリー低分子量G蛋白質、Ca2+シグナル、p38MAPキナーゼなど様々な上流シグナルによって活性が制御されている。SlingshotもCa2+シグナル、Rhoファミリー低分子量G蛋白質、PI3キナーゼ、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、Phospholipase D1 (PLD1)に対してリン酸化コフィリンが結合しPLD1を活性化することでRacの活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。個体においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンのノックアウトマウスは胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。その他に、コフィリンはアポトーシスの初期においてミトコンドリアに局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。     
 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。
 
 コフィリンは、試験管内の実験により、F-アクチン, G-アクチンどちらにも結合する。また、ADP結合型のアクチンに対してより高い親和性を持ち、ADPの加水分解とリン酸の放出が進んだ古いF-アクチンを切断・脱重合する<ref name="ref7"><pubmed>9087445</pubmed></ref><ref name="ref6" />。F-アクチンの脱重合と切断は異なる作用で、F-アクチンのマイナス端からアクチンの脱重合する活性とF-アクチンの側面に結合し切断する作用があると考えられている<ref name="ref7" /><ref><pubmed>9265645</pubmed></ref><ref><pubmed>11285275</pubmed></ref>
 
 細胞内で主に起こるF-アクチンの切断・脱重合の作用機序については未だ議論があるが、コフィリンの結合によりF-アクチンのらせん構造がよりねじれた状態になりアクチン分子間の結合が不安定となり切断されやすくなると考えられる<ref name="ref8"><pubmed>17018289</pubmed></ref>。また、コフィリンの濃度がある程度以上濃くなるとF-アクチン全ての結合部位にコフィリンが結合しF-アクチンが逆に安定化する。コフィリンの濃度が高い状態ではコフィリンがアクチンの核化を促進するモデルも提唱されている<ref name="ref8" />
 
 コフィリンは、細胞内のG-アクチンに結合し、ATP/ADP交換を阻害して重合させないようにする隔離作用もあると考えられている<ref><pubmed>8399167</pubmed></ref><ref><pubmed>8399168</pubmed></ref>
 
===活性調節===
 コフィリンのアクチン脱重合・切断活性に対する制御は、ホスファチジルイノシトール4,5ビスリン酸(PIP2)との結合によるアクチンへの結合阻害、3番目のセリン残基のリン酸化によるアクチンへの結合阻害、Actin interacting protein 1 (Aip1),アデニル酸シクラーゼ結合蛋白質(CAP)との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />
 
 PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的なPhospholipase C (PLC)の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[蛋白質リン酸化酵素]]としてLIMキナーゼファミリー(LIMK1, LIMK2, TESK1, TESK2)が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>
 
 LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1, LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1, TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />
 
 これに対して、特異的なコフィリンの[[蛋白質脱リン酸化酵素]]としてSlingshotファミリー(Slingshot-1, Slingshot-2, Slingshot-3)が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外にprotein phosphatase 1 (PP1), protein phosphatase 2A(PP2A)、ハロ酸デヒドロゲナーゼの一つで蛋白質脱リン酸化酵素として働くChronophinが脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />
 
 コフィリンのリン酸化制御は、進化的にショウジョウバエ以降で保存されており、線虫、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。LIMキナーゼは、Rhoファミリー低分子量G蛋白質、Ca2+シグナル、p38MAPキナーゼなど様々な上流シグナルによって活性が制御されている。SlingshotもCa2+シグナル、Rhoファミリー低分子量G蛋白質、PI3キナーゼ、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、Phospholipase D1 (PLD1)に対してリン酸化コフィリンが結合しPLD1を活性化することでRacの活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。個体においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンのノックアウトマウスは胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。その他に、コフィリンはアポトーシスの初期においてミトコンドリアに局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。     


== 神経細胞における役割  ==
== 神経細胞における役割  ==