「シナプトタグミン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:
 シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれるプロテインキナーゼCのC2調節領域に由来するタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)(図2)。ほ乳類には少なくとも17種類のアイソフォームが存在し、このうちシナプトタグミン1, 4, 7, 12, 14はショウジョウバエからほ乳類に至るまで進化的に保存されている<ref name=ref2><pubmed>12801916</pubmed></ref> <ref name=ref3><pubmed>20078875</pubmed></ref>。なお、シナプトタグミン16(元々の名称はStrep14)およびシナプトタグミン17(元々の名称はB/K)は膜貫通領域が欠損しているため、厳密にはシナプトタグミンファミリーの範疇には属さない<ref name=ref2><pubmed>12801916</pubmed></ref>。シナプトタグミンファミリー間で機能領域と考えられているC2A領域およびC2B領域は高度に保存されているが、他の領域(内腔領域、膜貫通領域およびスペーサー領域)ではほとんど相同性を示さない。シナプトタグミン1, 2では、細胞外に位置する内腔領域でN結合型糖鎖およびO結合型糖鎖の修飾を受けている。また、多くのアイソフォームで膜貫通領域の近傍でアシル化による修飾(システイン残基への脂肪酸の付加)を受け、オリゴマー形成が促進される<ref name=ref9><pubmed>    11514560</pubmed></ref>。二つのC2領域はアミノ酸レベルで40%以上の相同性を示すため、基本的には同様な立体構造を取り(8本のβストランドと3本のカルシウム結合ループにより構成)共にカルシウム結合能を示すが<ref name=ref10><pubmed>7697723</pubmed></ref> <ref name=ref11><pubmed>11754837</pubmed></ref>、互いに異なる生化学的性質も示す。一例を挙げると、C2B領域にはカルシウム非依存的にイノシトールポリリン酸、アダプター複合体AP-2、ニューレキシン(neurexin)などが結合し、またカルシウム依存的にC2B領域同士が結合し多量体を形成するが<ref name=ref12><pubmed>7961887</pubmed></ref> <ref name=ref13><pubmed>9830048</pubmed></ref>、これらの性質はC2A領域には見られない(図2)。カルシウム依存的にC2領域に結合する分子とシナプトタグミン1の結合に必要なカルシウム濃度は5-100μMであり、この濃度は神経細胞で開口放出に必要とされるカルシウムイオン濃度とほぼ一致している<ref name=ref8><pubmed>11399430</pubmed></ref>。
 シナプトタグミンはN末端側に膜貫通領域を持つ1回膜貫通型の膜タンパク質で、C末端側の細胞質領域にはC2領域と呼ばれるプロテインキナーゼCのC2調節領域に由来するタンパク質モチーフを2つ持っている(N末端側から、内腔領域、膜貫通領域、スペーサー領域、C2A領域、C2B領域と命名)(図2)。ほ乳類には少なくとも17種類のアイソフォームが存在し、このうちシナプトタグミン1, 4, 7, 12, 14はショウジョウバエからほ乳類に至るまで進化的に保存されている<ref name=ref2><pubmed>12801916</pubmed></ref> <ref name=ref3><pubmed>20078875</pubmed></ref>。なお、シナプトタグミン16(元々の名称はStrep14)およびシナプトタグミン17(元々の名称はB/K)は膜貫通領域が欠損しているため、厳密にはシナプトタグミンファミリーの範疇には属さない<ref name=ref2><pubmed>12801916</pubmed></ref>。シナプトタグミンファミリー間で機能領域と考えられているC2A領域およびC2B領域は高度に保存されているが、他の領域(内腔領域、膜貫通領域およびスペーサー領域)ではほとんど相同性を示さない。シナプトタグミン1, 2では、細胞外に位置する内腔領域でN結合型糖鎖およびO結合型糖鎖の修飾を受けている。また、多くのアイソフォームで膜貫通領域の近傍でアシル化による修飾(システイン残基への脂肪酸の付加)を受け、オリゴマー形成が促進される<ref name=ref9><pubmed>    11514560</pubmed></ref>。二つのC2領域はアミノ酸レベルで40%以上の相同性を示すため、基本的には同様な立体構造を取り(8本のβストランドと3本のカルシウム結合ループにより構成)共にカルシウム結合能を示すが<ref name=ref10><pubmed>7697723</pubmed></ref> <ref name=ref11><pubmed>11754837</pubmed></ref>、互いに異なる生化学的性質も示す。一例を挙げると、C2B領域にはカルシウム非依存的にイノシトールポリリン酸、アダプター複合体AP-2、ニューレキシン(neurexin)などが結合し、またカルシウム依存的にC2B領域同士が結合し多量体を形成するが<ref name=ref12><pubmed>7961887</pubmed></ref> <ref name=ref13><pubmed>9830048</pubmed></ref>、これらの性質はC2A領域には見られない(図2)。カルシウム依存的にC2領域に結合する分子とシナプトタグミン1の結合に必要なカルシウム濃度は5-100μMであり、この濃度は神経細胞で開口放出に必要とされるカルシウムイオン濃度とほぼ一致している<ref name=ref8><pubmed>11399430</pubmed></ref>。


 なお、シナプトタグミンファミリーと同様にC末端側に2つのC2領域を持つタンパク質ファミリーとしてDoc2/rabphilinファミリーやシナプトタグミン様タンパク質Slp(synaptotagmin-like protein)ファミリーが知られており、一部のものではシナプトタグミンとは異なるタイプのカルシウムセンサー(神経伝達物質放出の際の高親和性カルシウムセンサーなど)としての機能が提唱されている[14,15]
 なお、シナプトタグミンファミリーと同様にC末端側に2つのC2領域を持つタンパク質ファミリーとしてDoc2/rabphilinファミリーやシナプトタグミン様タンパク質Slp(synaptotagmin-like protein)ファミリーが知られており、一部のものではシナプトタグミンとは異なるタイプのカルシウムセンサー(神経伝達物質放出の際の高親和性カルシウムセンサーなど)としての機能が提唱されている<ref name=ref14><pubmed>18726178</pubmed></ref> <ref name=ref15><pubmed>20150444</pubmed></ref>


== シナプトタグミン1の神経伝達物質放出における機能 ==
== シナプトタグミン1の神経伝達物質放出における機能 ==


 シナプトタグミン1は1981年にシナプス小胞や内分泌細胞の有芯小胞上に豊富に存在する分子量65,000のシナプス小胞抗原タンパク質(p65)として報告され[16]、1990年にその構造が明らかにされた[1]。シナプトタグミン1は大脳、海馬などの脳組織に強く発現しており、ノックアウトマウスを用いた解析の結果、海馬神経細胞における開口放出のうちカルシウム依存的な活動電位と同調した速い放出(synchronous release)に重要であることが明らかとなった[17]。同様な活動電位と同調した速い放出成分の減少は、ショウジョウバエのシナプトタグミン1変異体でも観察されたことから[18]、シナプトタグミン1は活動電位と同調した低親和性のカルシウムセンサーとして機能すると一般的に考えられている。一方で、線虫やショウジョウバエのシナプトタグミン1変異体では開口放出の過程だけではなく、シナプス小胞のリサイクリングの過程にも異常があることが報告されており[19,20]、シナプトタグミン1が単なるカルシウムセンサーではなく、シナプス小胞輸送の様々なステップの制御にも関与する可能性が示唆されている。
 シナプトタグミン1は1981年にシナプス小胞や内分泌細胞の有芯小胞上に豊富に存在する分子量65,000のシナプス小胞抗原タンパク質(p65)として報告され<ref name=ref16><pubmed>7298720</pubmed></ref>、1990年にその構造が明らかにされた<ref name=ref1><pubmed>2333096</pubmed></ref>。シナプトタグミン1は大脳、海馬などの脳組織に強く発現しており、ノックアウトマウスを用いた解析の結果、海馬神経細胞における開口放出のうちカルシウム依存的な活動電位と同調した速い放出(synchronous release)に重要であることが明らかとなった<ref name=ref18><pubmed>8104705</pubmed></ref>。同様な活動電位と同調した速い放出成分の減少は、ショウジョウバエのシナプトタグミン1変異体でも観察されたことから<ref name=ref17><pubmed>7954835</pubmed></ref>、シナプトタグミン1は活動電位と同調した低親和性のカルシウムセンサーとして機能すると一般的に考えられている。一方で、線虫やショウジョウバエのシナプトタグミン1変異体では開口放出の過程だけではなく、シナプス小胞のリサイクリングの過程にも異常があることが報告されており<ref name=ref19><pubmed>7477324</pubmed></ref> <ref name=ref20><pubmed>14634669</pubmed></ref>、シナプトタグミン1が単なるカルシウムセンサーではなく、シナプス小胞輸送の様々なステップの制御にも関与する可能性が示唆されている。
 このようなシナプトタグミン1の機能の多様性は、それぞれのC2領域の固有の機能と密接な関連があるものと考えられている。例えば、C2A領域のリン脂質結合能が減少している変異型シナプトタグミン1(R233Q)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が抑制されるが[21]、逆にC2A領域のカルシウム依存的なシンタキシンへの結合が増加している優勢変異型シナプトタグミン1(D232N)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が増加する[22]。一方で、C2A領域へのカルシウムイオン結合能は神経伝達物質放出に必須ではないという報告もあり混沌としているが[23]、シナプトタグミン1のC2A領域に対する機能阻害抗体によりシナプス小胞の融合過程が著しく阻害されることから[24]、C2A領域の機能はやはりシナプス小胞の融合促進に重要と考えられている。
 このようなシナプトタグミン1の機能の多様性は、それぞれのC2領域の固有の機能と密接な関連があるものと考えられている。例えば、C2A領域のリン脂質結合能が減少している変異型シナプトタグミン1(R233Q)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が抑制されるが<ref name=ref21><pubmed>11242035</pubmed></ref>、逆にC2A領域のカルシウム依存的なシンタキシンへの結合が増加している優勢変異型シナプトタグミン1(D232N)をノックインしたマウス由来の神経細胞では神経伝達物質の放出が増加する<ref name=ref22><pubmed>17135417</pubmed></ref>。一方で、C2A領域へのカルシウムイオン結合能は神経伝達物質放出に必須ではないという報告もあり混沌としているが<ref name=ref23><pubmed>12110845</pubmed></ref>、シナプトタグミン1のC2A領域に対する機能阻害抗体によりシナプス小胞の融合過程が著しく阻害されることから<ref name=ref24><pubmed>7479868</pubmed></ref>、C2A領域の機能はやはりシナプス小胞の融合促進に重要と考えられている。


 これに対して、C2B領域はシナプス小胞の融合促進だけではなく[25,26]、シナプス小胞のエンドサイトーシスやドッキングなどの過程[27,28]にも関与するものと考えられている。例えば、ヤリイカ巨大軸索ではC2B領域に対する機能阻害抗体の導入により、シナプス小胞の融合過程には全く影響がなく、シナプス小胞のリサイクリングの過程が特異的に阻害される(恐らくはAP-2との結合を阻害)[29]。一方、C2Bドメインに特異的に結合するイノシトールポリリン酸(イノシトール1,3,4,5-四リン酸(IP4)など)をプレシナプスに導入すると、C2B領域に結合することによりシナプス小胞の融合過程が顕著に阻害される[30]。さらに、C2B領域(特にC2Bエフェクタードメインと呼ばれるβ4ストランド上の塩基性クラスター[12,13])はカルシウム刺激がないときには融合を抑制するようなクランプ的な機能を併せ持つと想定されており[31,32]、ショウジョウバエなどのシナプトタグミン1変異体では自発的な神経伝達物質放出が増大することが知られている[33]。このようなC2B領域の機能の多様性は、C2B領域に複数のエフェクター結合領域が存在することに起因するものと考えられている[5]。また、C2B領域は必ずしも単独で機能するのではなく、一部C2A領域と協調して小胞の融合を促進するモデルも提唱されている[34,35]。
 これに対して、C2B領域はシナプス小胞の融合促進だけではなく<ref name=ref25><pubmed>12110842</pubmed></ref> <ref name=ref26><pubmed>15456828</pubmed></ref>、シナプス小胞のエンドサイトーシスやドッキングなどの過程<ref name=ref27><pubmed>11114192</pubmed></ref>、 <ref name=ref28><pubmed>19716167</pubmed></ref>にも関与するものと考えられている。例えば、ヤリイカ巨大軸索ではC2B領域に対する機能阻害抗体の導入により、シナプス小胞の融合過程には全く影響がなく、シナプス小胞のリサイクリングの過程が特異的に阻害される(恐らくはAP-2との結合を阻害)<ref name=ref29><pubmed>15591349</pubmed></ref>。一方、C2Bドメインに特異的に結合するイノシトールポリリン酸(イノシトール1,3,4,5-四リン酸(IP4)など)をプレシナプスに導入すると、C2B領域に結合することによりシナプス小胞の融合過程が顕著に阻害される<ref name=ref30><pubmed>7809161</pubmed></ref>。さらに、C2B領域(特にC2Bエフェクタードメインと呼ばれるβ4ストランド上の塩基性クラスター[12,13])はカルシウム刺激がないときには融合を抑制するようなクランプ的な機能を併せ持つと想定されており<ref name=ref31><pubmed>8990201</pubmed></ref> <ref name=ref32><pubmed>21338883</pubmed></ref>、ショウジョウバエなどのシナプトタグミン1変異体では自発的な神経伝達物質放出が増大することが知られている<ref name=ref33><pubmed>12467593</pubmed></ref>。このようなC2B領域の機能の多様性は、C2B領域に複数のエフェクター結合領域が存在することに起因するものと考えられている<ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref>。また、C2B領域は必ずしも単独で機能するのではなく、一部C2A領域と協調して小胞の融合を促進するモデルも提唱されている[34,35]。


 シナプトタグミンによるカルシウム依存的な小胞融合の促進メカニズムとして現在最も有力な仮説は、膜の融合装置と考えられるSNAREタンパク質とシナプトタグミンとのカルシウム依存的な相互作用により小胞膜と細胞膜の融合が促進されるというモデルである。実際、精製したSNAREタンパク質を組み込んだ2種類のリポソーム(v-SNAREシナプトブレビンを組み込んだリポソームおよびt-SNAREシンタキシンとSNAP-25を組み込んだリポソーム)にカルシウムイオンとシナプトタグミン1の細胞質領域を加えることにより2種類のリポソームの膜融合が顕著に促進される[36]。一方、シナプトタグミンのC2領域のカルシウム依存的なリン脂質の結合が小胞の融合を促進するという仮説や、C2B領域同士のカルシウム依存的なオリゴマー化がシナプス小胞と細胞膜の融合により生じた孔を拡大させるという仮説も提唱されている[37]。
 シナプトタグミンによるカルシウム依存的な小胞融合の促進メカニズムとして現在最も有力な仮説は、膜の融合装置と考えられるSNAREタンパク質とシナプトタグミンとのカルシウム依存的な相互作用により小胞膜と細胞膜の融合が促進されるというモデルである。実際、精製したSNAREタンパク質を組み込んだ2種類のリポソーム(v-SNAREシナプトブレビンを組み込んだリポソームおよびt-SNAREシンタキシンとSNAP-25を組み込んだリポソーム)にカルシウムイオンとシナプトタグミン1の細胞質領域を加えることにより2種類のリポソームの膜融合が顕著に促進される[36]。一方、シナプトタグミンのC2領域のカルシウム依存的なリン脂質の結合が小胞の融合を促進するという仮説や、C2B領域同士のカルシウム依存的なオリゴマー化がシナプス小胞と細胞膜の融合により生じた孔を拡大させるという仮説も提唱されている[37]。