「トランスジェニック動物」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
 なお、外来遺伝子をゲノム上のランダムな位置に挿入するか、特定の位置を狙って挿入するかで作製方法が異なっており、「トランスジェニック動物」という用語は、前者の場合のみを指すことも多い。後者、すなわち特定の位置を狙って挿入する過程は標的遺伝子組換えと呼ばれ、特定の遺伝子を破壊するノックアウトの際に特に重要となる(詳しくは標的遺伝子組換えの項目を参照)。  
 なお、外来遺伝子をゲノム上のランダムな位置に挿入するか、特定の位置を狙って挿入するかで作製方法が異なっており、「トランスジェニック動物」という用語は、前者の場合のみを指すことも多い。後者、すなわち特定の位置を狙って挿入する過程は標的遺伝子組換えと呼ばれ、特定の遺伝子を破壊するノックアウトの際に特に重要となる(詳しくは標的遺伝子組換えの項目を参照)。  


=== 歴史的背景 ===
=== 歴史的背景 ===
 古典的な遺伝学では、ある表現型を示す突然変異体において、どの遺伝子座に突然変異が存在するかを調べることで、遺伝子と機能の関係を調べる(順遺伝学的手法)。しかしこの方法は、突然変異の位置と表現型の相関関係のみを明らかにするという点で、真の意味での遺伝子の機能証明とは言えなかった。そこで、より直接的な遺伝子機能の証明のために、トランスジェニック動物の作製による特定遺伝子の機能亢進や機能阻害の試みがなされるようになった(逆遺伝学的手法)。


 トランスジェニック動物の作製はマウスで初めて報告され、続いてショウジョウバエでも報告された。最初のトランスジェニックマウスは、1970年代にRudolf Jaenischらにより作製された<ref><pubmed> 4364530 </pubmed></ref>,<ref><pubmed> 1063407</pubmed></ref>。Jaenischらは、レトロウイルスが自身の遺伝子を宿主細胞のゲノムDNAに挿入する性質を利用し、レトロウイルス由来の遺伝子を持つトランスジェニックマウスを作製した。ただし、この方法で導入した外来遺伝子の発現量は低くかつ不均一であったため、応用の観点から有用な技術であるかは不明であった(これはおそらくマウス細胞が自己防衛のために、レトロウイルス由来の遺伝子の発現を抑制したことに因る)。その後1980年にJon Gordon、Frank Ruddleらにより、現在の主流となっているマウス受精卵前核にDNAを注入するという方法が初めて実戦された<ref><pubmed>6261253</pubmed></ref>。この方法だと高い発現量が得られる上に、非常に大きな遺伝子も導入できる利点がある。
 古典的な遺伝学では、ある表現型を示す突然変異体において、どの遺伝子座に突然変異が存在するかを調べることで、遺伝子と機能の関係を調べる(順遺伝学的手法)。しかしこの方法は、突然変異の位置と表現型の相関関係のみを明らかにするという点で、真の意味での遺伝子の機能証明とは言えなかった。そこで、より直接的な遺伝子機能の証明のために、トランスジェニック動物の作製による特定遺伝子の機能亢進や機能阻害の試みがなされるようになった(逆遺伝学的手法)。


 遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref>。ショウジョウバエの場合は、トランスポゾンが自身のDNAをゲノム中に挿入する性質を利用する。
 トランスジェニック動物の作製はマウスで初めて報告され、続いてショウジョウバエでも報告された。最初のトランスジェニックマウスは、1970年代にRudolf Jaenischらにより作製された<ref><pubmed> 4364530 </pubmed></ref>,<ref><pubmed> 1063407</pubmed></ref>。Jaenischらは、レトロウイルスが自身の遺伝子を宿主細胞のゲノムDNAに挿入する性質を利用し、レトロウイルス由来の遺伝子を持つトランスジェニックマウスを作製した。ただし、この方法で導入した外来遺伝子の発現量は低くかつ不均一であったため、応用の観点から有用な技術であるかは不明であった(これはおそらくマウス細胞が自己防衛のために、レトロウイルス由来の遺伝子の発現を抑制したことに因る)。その後1980年にJon Gordon、Frank Ruddleらにより、現在の主流となっているマウス受精卵前核にDNAを注入するという方法が初めて実戦された<ref><pubmed>6261253</pubmed></ref>。この方法だと高い発現量が得られる上に、非常に大きな遺伝子も導入できる利点がある。


 なお、マウスで初期に試されたレトロウイルスを用いた方法も、近年再び大きく注目されるようになった。レトロウイルスの中でもレンチウイルスを用いることで、外来遺伝子が発現しにくい問題が克服され、導入効率も非常に高いためである。例えば、霊長類初のトランスジェニック動物であるトランスジェニックマーモセットは、レンチウイルスを利用して作製された<ref><pubmed>19478777</pubmed></ref>。従って、当初の3つのアプローチ(DNAの直接注入・トランスポゾンの利用・レトロウイルスの利用)が現在でも主要なストラテジーであると言える。
 遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref>。ショウジョウバエの場合は、トランスポゾンが自身のDNAをゲノム中に挿入する性質を利用する。
 
 また、1980年代後半には、ゲノム上の特定の遺伝子を破壊するために、従来のトランスジェニックマウス作製技術と、DNA相同組換えや胚性幹細胞(ES細胞)の培養技術などを組み合わせ、外来DNAを目的の遺伝子の途中に挿入したいわゆるノックアウトマウスが作製された(詳しくは標的遺伝子組換えの項目を参照)。


 なお、マウスで初期に試されたレトロウイルスを用いた方法も、近年再び大きく注目されるようになった。レトロウイルスの中でもレンチウイルスを用いることで、外来遺伝子が発現しにくい問題が克服され、導入効率も非常に高いためである。例えば、霊長類初のトランスジェニック動物であるトランスジェニックマーモセットは、レンチウイルスを利用して作製された<ref><pubmed>19478777</pubmed></ref>。従って、当初の3つのアプローチ(DNAの直接注入・トランスポゾンの利用・レトロウイルスの利用)が現在でも主要なストラテジーであると言える。    また、1980年代後半には、ゲノム上の特定の遺伝子を破壊するために、従来のトランスジェニックマウス作製技術と、DNA相同組換えや胚性幹細胞(ES細胞)の培養技術などを組み合わせ、外来DNAを目的の遺伝子の途中に挿入したいわゆるノックアウトマウスが作製された(詳しくは標的遺伝子組換えの項目を参照)。


 
<br> <br> <br>  
<br> <br>  


== 外来遺伝子をゲノム上のランダムな位置に挿入する場合  ==
== 外来遺伝子をゲノム上のランダムな位置に挿入する場合  ==


 特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker gene)も同時に注入することがある。後述の標的遺伝子組換えと比べると手順の煩雑さが少なく、現在では[[マウス]]、[[ショウジョウバエ]]、[[線虫]]、[[ゼブラフィッシュ]]などの古典的な[[モデル動物]]以外の様々な動物種でも方法が確立されている。  
 特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker gene)も同時に注入することがある。後述の標的遺伝子組換えと比べると手順の煩雑さが少なく、現在では[[マウス]]、[[ショウジョウバエ]]、[[線虫]]、[[ゼブラフィッシュ]]などの古典的な[[モデル動物]]以外の様々な動物種でも方法が確立されている。 <br>  マウス以外の多くの動物種では、単にDNAを注入しただけではゲノム中に取り込まれる確率が非常に低い。しかしこうした動物でも、[[wikipedia:ja:トランスポゾン|トランスポゾン]]や[[ウイルスベクター]]、[[wikipedia:ja:DNAエンドヌクレアーゼ|DNAエンドヌクレアーゼ]]などを利用することで、トランスジェニック動物の作製が可能となることがある。ここでは、マウスとその他の哺乳類動物種、ショウジョウバエ、線虫についてより詳しく紹介する。 <br>


=== マウス  ===
=== マウス  ===


 マウスの場合は、受精卵前核にDNAを顕微注入する方法が一般的である<ref name="ref1">'''Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer'''<br>Manipulating the mouse embryo: A Laboratory Manual 3rd Ed.<br>'' Cold Spring Harbor Laboratory Press'':2003</ref>。これにより外来遺伝子はゲノム上の一か所に、複数コピーが一列に並んだ状態で挿入される。通常トランスジェニックマウスと言うと、このようにして外来遺伝子を導入したマウスを指し、後述の標的遺伝子組換えを行ったマウス([[ノックインマウス]]や[[ノックアウトマウス]]や[[Floxed mouse]])と区別する(ただし、厳密には全てトランスジェニックニック動物である)。  
 マウスの場合は、受精卵前核にDNAを顕微注入する方法が一般的である<ref name="ref1">'''Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer'''<br>Manipulating the mouse embryo: A Laboratory Manual 3rd Ed.<br>'' Cold Spring Harbor Laboratory Press'':2003</ref>。これにより外来遺伝子はゲノム上の一か所に、複数コピーが一列に並んだ状態で挿入される。通常トランスジェニックマウスと言うと、このようにして外来遺伝子を導入したマウスを指し、後述の標的遺伝子組換えを行ったマウス([[ノックインマウス]]や[[ノックアウトマウス]]や[[Floxed mouse]])と区別する(ただし、厳密には全てトランスジェニックニック動物である)。  
=== マウス以外の哺乳類動物 ===
 受精卵前核にDNAを顕微注入する、というマウスで一般的な方法は、他の哺乳類動物にも適応可能な場合が多い。しかしながらこの方法だと導入効率が悪く、通常数百個程度の受精卵が必要となり、マウス以外では非常に高価となる。さらに、多くの動物はマウスと異なり受精卵の細胞質が不透明なため、前核への正確な注入が困難となり、一層効率が下がる。そこで近年は、レトロウイルスの一種であるレンチウイルスを用いる方法が大きく注目されている。レトロウイルスは自身の遺伝子を感染した宿主細胞のゲノム中に挿入する性質がある。中でも、レンチウイルスは分裂中でない細胞にも感染しやすいことや、その遺伝子が宿主細胞によるサイレンシングを受けにくいなどの性質から、トランスジェニック動物作製に非常に有用である。外来遺伝子をDNAの状態で直接受精卵に注入する場合は卵細胞外内の前核に注入する必要がある。これにに対し、あらかじめレンチウイルスに導入してから注入する場合は、卵細胞外にある囲卵腔という空間に注入すればよく、しかも効率は遥かに高い。これまでに、マウス、ラット、ブタ、ウシなどに加え、霊長類であるコモンマーモセットでも、レンチウイルスを用いることで、効率よくトランスジェニック動物が作製できることが報告されている。
<br>


=== その他の動物種  ===
=== その他の動物種  ===
32

回編集