「フェロモン受容体」の版間の差分

81行目: 81行目:
 昆虫のORは、リガンドを結合するORと、共役因子であるOrcoがヘテロ複合体を形成し、リガンド作動性イオンチャネルとして機能している<ref><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>69,70。ORに匂い分子が結合することで、ORとOrcoから形成されるポアが開口し、陽イオンが細胞内に流入することで活動電位が生じる。2012年にNakagwaらは点変異を導入したBmOr1とBmOrcoを解析し、OrとOrcoの複合体がポア構造を形成するために必要なアミノ酸部位を同定した<ref><pubmed>22403649</pubmed></ref>71。
 昆虫のORは、リガンドを結合するORと、共役因子であるOrcoがヘテロ複合体を形成し、リガンド作動性イオンチャネルとして機能している<ref><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>69,70。ORに匂い分子が結合することで、ORとOrcoから形成されるポアが開口し、陽イオンが細胞内に流入することで活動電位が生じる。2012年にNakagwaらは点変異を導入したBmOr1とBmOrcoを解析し、OrとOrcoの複合体がポア構造を形成するために必要なアミノ酸部位を同定した<ref><pubmed>22403649</pubmed></ref>71。


 一方で、Gタンパク質を介したシグナル伝達の可能性も報告されている。古くからガにおいてはORのシグナル伝達へのホスホリパーゼCβ2(PLCβ2)やGαqなどのタンパク質の関与が報告されてきた<ref name=Stengl2010><pubmed>21228914</pubmed></ref>72。昆虫のORがリガンド作動性イオンチャネルであることが報告された後にも、ショウジョウバエやタバコスズメガにおけるORのシグナル伝達ではPLCβ2やプロテインキナーゼC(PKC)が関与している例が報告されている<ref name=Stengl2010><ref><pubmed>28254882</pubmed></ref><ref><pubmed>21720521</pubmed></ref>72–74。WicherらはGαsによるアデニル酸シクラーゼの活性化と、それに伴うcAMP濃度の上昇がORのシグナル伝達に関与することを報告している<ref name=Wicher2008><ref><pubmed>27045092</pubmed></ref>70,75。以上の知見から、昆虫ORの細胞内シグナル伝達には、複数の機構が存在しているのではないかと考えられている。現在のところ、リガンド作動性イオンチャネルとしてのシグナル伝達が直接的な速い応答を引き起こし、Gタンパク質を介したシグナル伝達は遅いが好感度な応答を引き起こすのに関与していると考えられている<ref><pubmed>19660933</pubmed></ref>76。
 一方で、Gタンパク質を介したシグナル伝達の可能性も報告されている。古くからガにおいてはORのシグナル伝達へのホスホリパーゼCβ2(PLCβ2)やGαqなどのタンパク質の関与が報告されてきた<ref name=Stengl2010><pubmed>21228914</pubmed></ref>72。昆虫のORがリガンド作動性イオンチャネルであることが報告された後にも、ショウジョウバエやタバコスズメガにおけるORのシグナル伝達ではPLCβ2やプロテインキナーゼC(PKC)が関与している例が報告されている<ref name=Stengl2010/><ref><pubmed>28254882</pubmed></ref><ref><pubmed>21720521</pubmed></ref>72–74。WicherらはGαsによるアデニル酸シクラーゼの活性化と、それに伴うcAMP濃度の上昇がORのシグナル伝達に関与することを報告している<ref name=Wicher2008/><ref><pubmed>27045092</pubmed></ref>70,75。以上の知見から、昆虫ORの細胞内シグナル伝達には、複数の機構が存在しているのではないかと考えられている。現在のところ、リガンド作動性イオンチャネルとしてのシグナル伝達が直接的な速い応答を引き起こし、Gタンパク質を介したシグナル伝達は遅いが好感度な応答を引き起こすのに関与していると考えられている<ref><pubmed>19660933</pubmed></ref>76。


 上記のような細胞内シグナル伝達を経てフェロモンの情報は電気信号へと変換される。嗅神経細胞は軸索を一次中枢である触角葉へと投射し、糸球体構造を形成する<ref><pubmed>20537755</pubmed></ref><ref name=Kohl2015><pubmed>26143522</pubmed></ref><ref name=Hansson1992><pubmed>1598574</pubmed></ref>77–79。特に鱗翅目昆虫では特徴的な糸球体構造を有しており、フェロモン情報を処理する糸球体は大糸球体と呼ばれ、一般的な匂い情報を処理する常糸球体とは解剖学的に異なる<ref name=Hansson1992/>79。触角葉で処理されたフェロモン情報は、投射神経によりキノコ体と全大脳側部といった高次領域へと伝達される<ref name=Kohl2015/><ref><pubmed>15593336</pubmed></ref>78,80。
 上記のような細胞内シグナル伝達を経てフェロモンの情報は電気信号へと変換される。嗅神経細胞は軸索を一次中枢である触角葉へと投射し、糸球体構造を形成する<ref><pubmed>20537755</pubmed></ref><ref name=Kohl2015><pubmed>26143522</pubmed></ref><ref name=Hansson1992><pubmed>1598574</pubmed></ref>77–79。特に鱗翅目昆虫では特徴的な糸球体構造を有しており、フェロモン情報を処理する糸球体は大糸球体と呼ばれ、一般的な匂い情報を処理する常糸球体とは解剖学的に異なる<ref name=Hansson1992/>79。触角葉で処理されたフェロモン情報は、投射神経によりキノコ体と全大脳側部といった高次領域へと伝達される<ref name=Kohl2015/><ref><pubmed>15593336</pubmed></ref>78,80。