「ホスホリパーゼC」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:Phospholipase C 英語略名:PLC
英語名:Phospholipase C 英語略名:PLC


Ⅰ.概要
Ⅰ.概要


フォスフォリパーゼ C(phospholipase C、PLC)は、生体膜の主要成分であるリン脂質を加水分解する酵素群(phospholipase)の中の、グリセロールとリン酸の間のエステル結合を加水分解する酵素の総称である。PLCは受容体刺激により活性化され、主な基質であるフォスファチジルイノシトール4,5-二リン酸(phosphatidylinositol 4,5-bisphosphate, PIP2)を、イノシトール1,4,5-三リン酸(inositol 1,4,5-triphosphate, IP3)とジアシルグリセロール(diacylglycerol, DAG)に分解する(図 1)。この反応により生じる(1)PIP2低下、(2)IP3生成、(3)DAG生成、はそれぞれシグナルとして働き細胞内で多様な反応を引き起こす。例えば、(1)PIP2低下はイオンチャネルの働きを変化させ、(2)IP3はIP3受容体を介する小胞体からのCa2+放出により細胞内Ca2+濃度を局所的に上昇させ、(3) DAGはプロテインキナーゼC(protein kinase C, PKC)やTRPCチャネルを活性化する。また、DAGがジアシルグリセロールリパーゼ(diacylglycerol lipase, DGL)により分解されると、内因性カンナビノイドである2-アラキドノイルグリセロール(2-arachidonoylglycerol, 2-AG)が生成され、それはさらにカンナビノイド受容体(CB1, CB2)を介して様々な反応を引き起こす(図 1)。
フォスフォリパーゼ C(phospholipase C、PLC)は、生体膜の主要成分であるリン脂質を加水分解する酵素群(phospholipase)の中の、グリセロールとリン酸の間のエステル結合を加水分解する酵素の総称である。PLCは受容体刺激により活性化され、主な基質であるフォスファチジルイノシトール4,5-二リン酸(phosphatidylinositol 4,5-bisphosphate, PIP2)を、イノシトール1,4,5-三リン酸(inositol 1,4,5-triphosphate, IP3)とジアシルグリセロール(diacylglycerol, DAG)に分解する(図 1)。この反応により生じる(1)PIP<sub>2</sub>低下、(2)IP<sub>3</sub>生成、(3)DAG生成、はそれぞれシグナルとして働き細胞内で多様な反応を引き起こす。例えば、(1)PIP<sub>2</sub>低下はイオンチャネルの働きを変化させ、(2)IP<sub>3</sub>はIP<sub>3</sub>受容体を介する小胞体からのCa2+放出により細胞内Ca2+濃度を局所的に上昇させ、(3) DAGはプロテインキナーゼC(protein kinase C, PKC)やTRPCチャネルを活性化する。また、DAGがジアシルグリセロールリパーゼ(diacylglycerol lipase, DGL)により分解されると、内因性カンナビノイドである2-アラキドノイルグリセロール(2-arachidonoylglycerol, 2-AG)が生成され、それはさらにカンナビノイド受容体(CB1, CB2)を介して様々な反応を引き起こす(図 1)。




15行目: 16行目:


哺乳動物におけるPLCの各サブタイプの発現量は、組織により、また、脳の部位や細胞の種類により大きく異なる。各タイプの高発現部位は以下の通りである。
哺乳動物におけるPLCの各サブタイプの発現量は、組織により、また、脳の部位や細胞の種類により大きく異なる。各タイプの高発現部位は以下の通りである。
(1)PLCβ<ref><pubmed>9753089</pubmed></ref>
(1)PLCβ<ref><pubmed>9753089</pubmed></ref>  
PLCβ1, 3, 4は脳で発現が高いが、その分布は脳領域により異なる。PLCβ1は主に大脳で、PLCβ3 は小脳尾側部で、PLCβ4は小脳吻側部、視床、脳幹に分布する。PLCβ2は脳での発現は低い。脳以外の部位としては、PLCβ2は造血由来細胞で、PLCβ3は肝臓、耳下腺で、PLC-β4は網膜に多く分布する。
PLCβ1, 3, 4は脳で発現が高いが、その分布は脳領域により異なる。PLCβ1は主に大脳で、PLCβ3 は小脳尾側部で、PLCβ4は小脳吻側部、視床、脳幹に分布する。PLCβ2は脳での発現は低い。脳以外の部位としては、PLCβ2は造血由来細胞で、PLCβ3は肝臓、耳下腺で、PLC-β4は網膜に多く分布する。


57行目: 58行目:
Ⅴ.PLC下流シグナルの働き
Ⅴ.PLC下流シグナルの働き


PLCの活性化は、基質であるPIP2の減少と産物であるIP3とDAGの生成をもたらす。これら3つの因子はそれぞれシグナルとして働き、細胞内で多様な反応を引き起こす(図1)。代表的なものを以下に示す。
PLCの活性化は、基質であるPIP2の減少と産物であるIP<sub>3</sub>とDAGの生成をもたらす。これら3つの因子はそれぞれシグナルとして働き、細胞内で多様な反応を引き起こす(図1)。代表的なものを以下に示す。


(1)PIP2<ref><pubmed>15922587</pubmed></ref>
(1)PIP<sub>2</sub><ref><pubmed>15922587</pubmed></ref>
多くの蛋白質は特定のイノシトールリン脂質(PIP2を含む)を認識するドメインを有しており、よってPIP2の濃度変化はそれらの蛋白質の機能に影響をおよぼしうる。PIP2により活性が高められることが報告されているチャネルには、内向き整流K+チャネル(Kir1, Kir2, Kir3, Kir6)、N型電位依存性Ca2+チャネル、M電流を担うK+チャネル(Mチャネル、KCNQ/Kv7)、TRP(transient receptor potential)ファミリー(TRPV1, TRPM5, TRPM7, TRPM8)、リアノジン受容体、などがある。M1ムスカリン性アセチルコリン受容体刺激によるMチャネルの抑制は、PIP2減少によると考えられている。
多くの蛋白質は特定のイノシトールリン脂質(PIP<sub>2</sub>を含む)を認識するドメインを有しており、よってPIP<sub>2</sub>の濃度変化はそれらの蛋白質の機能に影響をおよぼしうる。PIP<sub>2</sub>により活性が高められることが報告されているチャネルには、内向き整流K+チャネル(Kir1, Kir2, Kir3, Kir6)、N型電位依存性Ca2+チャネル、M電流を担うK+チャネル(Mチャネル、KCNQ/Kv7)、TRP(transient receptor potential)ファミリー(TRPV1, TRPM5, TRPM7, TRPM8)、リアノジン受容体、などがある。M1ムスカリン性アセチルコリン受容体刺激によるMチャネルの抑制は、PIP<sub>2</sub>減少によると考えられている。


(2)IP3
(2)IP<sub>3</sub>
PLCにより生成されるIP3は、IP3受容体に結合し小胞体からCa2+を放出させ、細胞内Ca2+濃度上昇をもたらす。Gq共役型受容体刺激により起こる初期のCa2+濃度上昇の少なくとも一部は、PLCβを介してこの経路が働くことによる。
PLCにより生成されるIP<sub>3</sub>は、IP<sub>3</sub>受容体に結合し小胞体からCa2+を放出させ、細胞内Ca2+濃度上昇をもたらす。Gq共役型受容体刺激により起こる初期のCa2+濃度上昇の少なくとも一部は、PLCβを介してこの経路が働くことによる。


(3)DAG
(3)DAG
76行目: 77行目:
(1)静止膜電位の変化<ref><pubmed>20446119</pubmed></ref><ref><pubmed>15194117</pubmed></ref>
(1)静止膜電位の変化<ref><pubmed>20446119</pubmed></ref><ref><pubmed>15194117</pubmed></ref>
ムスカリン受容体刺激は細胞のタイプや条件によりさまざまな膜電位変化(単相性の脱分極、単相性の過分極、両者が混ざったもの)をもたらす。
ムスカリン受容体刺激は細胞のタイプや条件によりさまざまな膜電位変化(単相性の脱分極、単相性の過分極、両者が混ざったもの)をもたらす。
 脱分極のメカニズムとしては、非選択性陽イオンチャネルの活性化とK+チャネルの抑制とがある。非選択性陽イオンチャネルの分子実態は不明であるが、TRPファミリーの一員である可能性が高く、TPRC4およびTRPC5の関与が示唆されている。これらのチャネルの活性化経路は不明であるが、PLCの下流の何らかのシグナルが関与していると考えられる。ムスカリン受容体刺激により抑制されるK+チャネルには、Mチャネルと内向き整流K+チャネルが含まれる。メカニズムとしては、少なくともMチャネルの場合は、PIP2減少の関与の可能性が高い。
 脱分極のメカニズムとしては、非選択性陽イオンチャネルの活性化とK+チャネルの抑制とがある。非選択性陽イオンチャネルの分子実態は不明であるが、TRPファミリーの一員である可能性が高く、TPRC4およびTRPC5の関与が示唆されている。これらのチャネルの活性化経路は不明であるが、PLCの下流の何らかのシグナルが関与していると考えられる。ムスカリン受容体刺激により抑制されるK+チャネルには、Mチャネルと内向き整流K+チャネルが含まれる。メカニズムとしては、少なくともMチャネルの場合は、PIP<sub>2</sub>減少の関与の可能性が高い。
 過分極のメカニズムとしては、IP3を介する細胞内Ca2+濃度上昇により、アパミン感受性のCa2+依存性K+チャネル(SKチャネル)が活性化されることが考えられる。
 過分極のメカニズムとしては、IP<sub>3</sub>を介する細胞内Ca2+濃度上昇により、アパミン感受性のCa2+依存性K+チャネル(SKチャネル)が活性化されることが考えられる。


(2)後脱分極
(2)後脱分極
83行目: 84行目:


(3)細胞内Ca2+濃度上昇
(3)細胞内Ca2+濃度上昇
ムスカリン受容体刺激は細胞内Ca2+濃度上昇をもたらす。メカニズムとしては、IP3を介して小胞体からCa2+が放出されること、PLCの下流の何らかのシグナルにより活性化された非選択性陽イオンチャネルを介してCa2+が流入すること、脱分極により活性化された電位依存性Ca2+チャネルを介してCa2+が流入すること、などが関与しうる。
ムスカリン受容体刺激は細胞内Ca2+濃度上昇をもたらす。メカニズムとしては、IP<sub>3</sub>を介して小胞体からCa2+が放出されること、PLCの下流の何らかのシグナルにより活性化された非選択性陽イオンチャネルを介してCa2+が流入すること、脱分極により活性化された電位依存性Ca2+チャネルを介してCa2+が流入すること、などが関与しうる。
 樹状突起のムスカリン受容体を局所的に短時間刺激すると、Ca2+濃度上昇の波が細胞体に向かって伝播するのがみられる。このCa2+ waveにおいてはIP3受容体を介するCa2+放出が重要な役割を担っている。
 樹状突起のムスカリン受容体を局所的に短時間刺激すると、Ca2+濃度上昇の波が細胞体に向かって伝播するのがみられる。このCa2+ waveにおいてはIP<sub>3</sub>受容体を介するCa2+放出が重要な役割を担っている。


(4)NMDA受容体に及す影響
(4)NMDA受容体に及す影響
91行目: 92行目:
(5)シナプス可塑性の誘導あるいは促進
(5)シナプス可塑性の誘導あるいは促進
ムスカリン受容体刺激はシナプス可塑性に多様な影響をおよぼす。CA1錐体細胞への興奮性入力において、ムスカリン受容体刺激は、長期抑圧(long-term depression, LTD)あるいは長期増強(long-term potentiation, LTP)を単独で誘導し、また、電気刺激で誘導されるLTPを促進する。
ムスカリン受容体刺激はシナプス可塑性に多様な影響をおよぼす。CA1錐体細胞への興奮性入力において、ムスカリン受容体刺激は、長期抑圧(long-term depression, LTD)あるいは長期増強(long-term potentiation, LTP)を単独で誘導し、また、電気刺激で誘導されるLTPを促進する。
 LTDの誘導にはCa2+濃度上昇と蛋白合成が必要であり、LTPの誘導にはIP3受容体を介するCa2+放出とPKCが関与する。LTPの促進については、前述のNMDA受容体に対する促進作用やSKチャネルの抑制の関与が報告されている。後者については、M1受容体の活性化によりPKCを介してSKチャネルが抑制され、それによりLTP誘導時の興奮性シナプス後電位(excitatory postsynaptic potential, EPSP)の持続時間が延び、それによりNMDA受容体のチャネル機能が促進される、と説明されている。
 LTDの誘導にはCa2+濃度上昇と蛋白合成が必要であり、LTPの誘導にはIP<sub>3</sub>受容体を介するCa2+放出とPKCが関与する。LTPの促進については、前述のNMDA受容体に対する促進作用やSKチャネルの抑制の関与が報告されている。後者については、M1受容体の活性化によりPKCを介してSKチャネルが抑制され、それによりLTP誘導時の興奮性シナプス後電位(excitatory postsynaptic potential, EPSP)の持続時間が延び、それによりNMDA受容体のチャネル機能が促進される、と説明されている。


(6)内因性カンナビノイド2-AGの放出<ref><pubmed>19126760</pubmed></ref>
(6)内因性カンナビノイド2-AGの放出<ref><pubmed>19126760</pubmed></ref>
16

回編集