「免疫組織化学法」の版間の差分

編集の要約なし
編集の要約なし
2行目: 2行目:
<font size="+1">[http://researchmap.jp/masahikowatanabe 渡辺 雅彦]</font><br>
<font size="+1">[http://researchmap.jp/masahikowatanabe 渡辺 雅彦]</font><br>
''北海道大学大学院医学研究科解剖学講座''<br>
''北海道大学大学院医学研究科解剖学講座''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年6月14日 原稿完成日:2013年XX月XX日<br>
DOI:<selfdoi /> 原稿受付日:2013年6月14日 原稿完成日:2013年XX月XX日<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
</div>
</div>
26行目: 26行目:


==それぞれの検出法の利点==
==それぞれの検出法の利点==
 蛍光抗体法の利点は、異なる励起波長の蛍光物質([[w:Fluorescein isothiocyanate|FITC]]、[[w:Cy3#Cy3_and_Cy5|Cy3]]、[[w:Cy3#Cy3_and_Cy5|Cy5]]、[[w:Alexa Fluor|Alexa]]など)や同じ励起波長でも発行は長が異なる量子ドット(Quantum dot )をレポーターとすることにより複数の分子の同時検出(多重染色)が容易にできることである。その際、使用する一次抗体を作成した動物種が異なっていることが必要条件となる。
 蛍光抗体法の利点は、異なる励起波長の蛍光物質([[w:Fluorescein isothiocyanate|FITC]]、[[w:Cy3#Cy3_and_Cy5|Cy3]]、[[w:Cy3#Cy3_and_Cy5|Cy5]]、[[w:Alexa Fluor|Alexa]]など)や同じ励起波長でも発光波長が異なる量子ドット(Quantum dot )をレポーターとすることにより複数の分子の同時検出(多重染色)が容易にできることである。その際、使用する一次抗体を作成した動物種が異なっていることが必要条件となる。


 酵素抗体法、特に[[wj:ペルオキシダーゼ|ペルオキシダーゼ]]を利用した酵素抗体法の利点は、光学顕微鏡と電子顕微鏡の両方で検出が可能であることと、検出感度が高いことである。しかし、酵素反応物が拡散し周囲に沈着するため、電子顕微鏡レベルの酵素抗体法では、正確に抗原存在部位を特定することはできない。
 酵素抗体法、特に[[wj:ペルオキシダーゼ|ペルオキシダーゼ]]を利用した酵素抗体法の利点は、光学顕微鏡と電子顕微鏡の両方で検出が可能であることと、検出感度が高いことである。しかし、酵素反応物が拡散し周囲に沈着するため、電子顕微鏡レベルの酵素抗体法では、正確に抗原存在部位を特定することはできない。


 これを克服する免疫電顕法は、非拡散性の金属粒子をレポーターとした[[金コロイド免疫電顕法]]や[[銀増感免疫電顕法]]であるが、感度の点では酵素抗体法に劣る。免疫組織化学を行うにあたっては、目的に応じてどの方法を選択するのがよいのか、どの方法を組み合わせるとゴールに到達できるのかを、予め検討しておくことが重要である。
 これを克服する免疫電顕法は、非拡散性の金属粒子をレポーターとした[[金コロイド免疫電顕法]]や[[銀増感免疫電顕法]]であるが、感度の点では酵素抗体法に劣る。ストレプトアビジンに蛍光色素と金粒子が結合したFluoroNanogold標識ストレプトアビジンを用いたり、植物由来のphototropin 2を改変した蛍光タンパク”miniSOG”を目的の分子のタグとして用いると、蛍光顕微鏡と電子顕微鏡の両方で目的分子の観察や検出を行うことができる。免疫組織化学を行うにあたっては、目的に応じてどの方法を選択するのがよいのか、どの方法を組み合わせるとゴールに到達できるのかを、予め検討しておくことが重要である。


==関連項目==
==関連項目==