前補足運動野

提供:脳科学辞典
2012年3月8日 (木) 22:24時点におけるYoshiyamatsuzaka (トーク | 投稿記録)による版

ナビゲーションに移動 検索に移動

英 presupplementary motor area 英略 pre-SMA, preSMA

 前補足運動野(presupplementary motor area, pre-SMA)とは大脳皮質前頭葉のうちBrodmann分類の6野内側部かつ補足運動野の前方を占める皮質運動領野である。かつては補足運動野の一部と看做されていたが、その後の研究によって解剖・生理学的性質や機能の違いが明らかになり、現在では6野内側部後方を(狭義の)補足運動野、前方を前補足運動野として区別する。前補足運動野は前頭前野と密接な線維連絡を持ち、補足運動野に比べて高次の運動制御に関わっている事が示唆されている。

歴史的背景

 古典的な定義による補足運動野はBrodmann分類の6野内側部全体を占めると考えられてきた。しかし6野内側部は皮質の層構造の違いから前後二つの領域(それぞれ6aβ及び6aα、又はF3及びF6)に分けられることが知られており、又90年代に入って6aαに加えて6aβからも電気刺激によって上肢の運動を惹起できること、及び6aβ野には動物が手を伸ばして物を取ろうとするときに特徴的な活動を示すニューロン群が見られることなどから6野内側部全体を一つの皮質運動野と看做す考え方に疑義が呈されるようになった。こうした経緯を踏まえて、同じ個体(サル)で系統的に6野内側部前方・後方の性質を比較した研究(Matsuzaka et al 1992)の結果、1).従来補足運動野と呼ばれていた6野内側部には、前後各一つずつの上肢の運動に関連した領域が存在すること、2).6野前方部の領域は後方部とは解剖・生理学的な性質が異なること、3).従来から知られていた補足運動野の性質(体部位再現の存在、電気刺激による運動の誘発、脊髄への投射経路の存在など)は6野内側部後方に当てはまる事、が明らかにされるに及んで6野前方部は前補足運動野として確立され、補足運動野とは異なる領域として取り扱われるに至った。なお、前補足運動野の概念は最初に動物実験で確立されたが、現在ではヒトでも6野内側部は前補足運動野と補足運動野に分けられることが明らかにされている(Zilles et al 1995; Picard & Strick, 1996; Baleydier et al 1997)。

解剖・生理学的所見

 前補足運動野の位置は6野内側部前方で組織学的には6aβ(Vogt and Vogt 1919)やF6(Matelli et al 1991)と呼ばれる領域に該当する。前補足運動野は補足運動野とは以下の点で区別される。
1) 電気刺激の効果
 前補足運動野のニューロンは上肢の運動に関連して活動し、又この領域からは電気刺激によって上肢の運動を惹起することが出来る。しかし、前補足運動野における誘発運動には補足運動野に比べてより強い電流を必要とし、しかも刺激の効果は明確でない場合が大部分である。又、前補足運動野の上肢領域は補足運動野の顔の領域よりも前方に位置し、それよりも後方に位置する補足運動野の上肢支配領域とは空間的にも分離している。
2) 感覚応答
 前補足運動野のニューロンは視覚刺激に対して反応する一方、体性感覚刺激には殆ど反応しない。対照的に補足運動野においては体性感覚刺激に対する応答が顕著であり、しかもその受容野は前方から後方にかけて顔、上肢、体幹、下肢の順に配置されている(体部位再現)。反面視覚刺激に対する応答性は乏しい。
3) 皮質-皮質間投射及び皮質下との線維連絡(Luppino et al 1993; Inase et al 1996)
 前補足運動野と補足運動野はその入力・出力のパターンが大きく異なる。前補足運動野には前頭前野背外側部(Brodmannの46野)から密な直接入力があり、その他にも8b野、及び前頭眼窩野の11,12野からも入力を受け取っている。対照的に補足運動野と前頭前野との線維連絡は乏しい。他の皮質運動野との線維連絡も前補足運動野と補足運動野は異なる。先ずどちらの領野にも背側及び腹側運動前野(PMd及びPMv)からの入力があるが、前補足運動野への入力はPMd, PMvの吻側部(PMdr及びPMvr)からの入力が主であるのに対して、補足運動野へはPMd, PMvの尾側部(PMdc及びPMvc)からの入力が優勢である。帯状皮質運動野からの入力も両領野は異なり、前補足運動野は吻側帯状皮質運動野(CMAr)から、補足運動野は尾側帯状皮質運動野(CMAc)からそれぞれ入力を受け取る。一次運動野との関係では、補足運動野は一次運動野と密な双方向性の線維連絡を持つ一方、前補足運動野は一次運動野とは線維連絡を持たない。頭頂葉との関係についてみると、前補足運動野、補足運動野はそれぞれ下、上頭頂皮質(それぞれBrodmann分類の7a, 5野)からの入力を受ける。
 皮質下との線維連絡にも両領野間に違いが見られる。前補足運動野、補足運動野への視床からの入力はそれぞれVApc, VLo核が主な入力源である。線条体に対しては補足運動野が被殻に投射するのに対して、前補足運動野は被殻と尾状核の中間部に投射する。又、脊髄に対しては補足運動野からは脊髄への直接投射があるのに対して前補足運動野からは皮質脊髄への投射はない。
 上記の入出力パターンの違いは多くの場合絶対的なものではない。即ち前補足運動野・補足運動野と入出力関係を持つ領域は完全には分離しておらず、ある程度の重なりが見られる。しかしその中で最も顕著な違いは前頭前野、一次運動野・脊髄との関係で、前頭前野は前補足運動野に投射するのに対して、補足運動野には投射しない(Luppino et al 1993)。また補足運動野は一次運動野・脊髄に直接投射しているのに対して、前補足運動野からは電気刺激による運動の誘発のしにくさから予想されるように、一次運動野・脊髄への投射はない(Matsuzaka et al 1992; Luppino et al 1993)。

機能

 前補足運動野の機能については領域が確立されてからの歴史が浅いこともあり、解明の途上である。又、従来補足運動野の破壊症状として考えられていた症例には前補足運動野や帯状皮質運動野の損傷を伴うケースも含まれていると考えられ、これまでの内側領野損傷に伴う高次運動障害の症例報告については見直しが必要である。現在までに脳機能イメージング、ニューロン活動記録などの手法によって前補足運動野は随意運動制御において隣接する補足運動野よりも高度な側面に関わっている事が示唆されている。ここではそのうち代表的なものについて触れる。

運動の準備

 前補足運動野は補足運動野に比べて運動の準備段階から活動するニューロンを高い割合で含む(Alexander & Cructher 1990; Matsuzaka et al 1992)。但し、こうした神経活動は脳の他の領域でも数多く発見されており、前補足運動野に特有のものではない。

ルーチン化した行動の切り替え

 日常生活において習慣化・ルーチン化した動作は半ば無意識のうちに自動的に実行される。例えば年が明けて間もない頃、日付を書こうとして何気なく去年の年を書いてしまうといった経験は誰にでもあろう。それに対して、状況の変化に応じて適切な動作を選択・実行するためには、状況がどのように変化したかという認知、変化した状況においてどのような行動が適切かという判断、その結果選んだ行動の実行というより意識的な一連のプロセスを必要とする。こうした柔軟な行動の切り替えには高次皮質運動野の中でも特に前補足運動野や吻側帯状皮質運動野の関与が示唆されており、これらの領域からは動物がルーチン化した運動を行っているときには活動せず、運動を切り替える時に限って活動するニューロンが発見されている(Matsuzaka & Tanji 1996; Shima et al 1996; Nakamura et al 1998; Isoda and Hikosaka 2007)。一方こうしたニューロンは補足運動野、尾側帯状皮質運動野では乏しく一次運動野では見つかっていない。前述のように前補足運動野は前頭前野から豊富な入力を受け取っているが、前頭前野はその破壊症状から個体が状況の変化に柔軟に応じた行動を取るのに重要な役割を果たしている事が示唆されており、適応行動にこれらの領域からなるネットワークが関与していると見られる(Rushworth-MF et al 2002)。

手続き学習procedural learning

 複数の要素的動作を複雑な順序で組み合わせて実行することは我々の日常生活の中で重要な位置を占める(例、書字、タイピング、演奏等)。多くの場合これらの複雑な連続動作は生得的に備わっているものではなく、繰り返し実行する事によって獲得したスキル、つまり手続き記憶の一種である。前補足運動野は手続き学習のうち、連続動作の新規学習に関わっていると考えられている。こうした見方を裏付ける根拠として連続動作の学習初期に前補足運動野の血流量が増大すること(Hikosaka et al 1996; Sakai et al 1998, 1999; Meister et al 2005)、前補足運動野のニューロンは新しい運動シークエンスを与えられた時に活動が増強する一方、動物が動作の実行に習熟するに従って活動が減弱すること(Nakamura et al 1998)、および連続動作学習初期に前補足運動野へのムシモール注入によって動作の順序を間違え易くなる一方で既に習熟した動作の実行には影響を及ぼさないこと(Nakamura et al 1999)等が挙げられる。これらの所見は補足運動野には当てはまらず、両領野の機能差が示唆される。

動作の時間的順序のコントロール

 前補足運動野は補足運動野と同様に順序動作の実行にも関与していることがニューロン記録や障害実験の結果から示唆されている(Tanji 2001)。

その他

 動作のタイミングコントロール(Mita et al 2009)や自他の区別(Yoshida et al 2011)などが新たに前補足運動野の役割として指摘されている。


関連文献

Zilles-K, Schlaug-G, Matelli-M, Luppino-G, Schleicher-A, Qu-M, Dabringhaus-A, Seitz-R and Roland-PE Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J-Anat. 187: 515-537, 1995
Picard-N and Strick-PL Motor areas of the medial wall: a review of their location and functional activation. Cereb-Cortex 6: 342-353, 1996
Baleydier-C, Achache-P and Froment-JC Neurofilament architecture of superior and mesial premotor cortex in the human brain. Neuroreport 8: 1991-1996, 1997
Luppino-G, Matelli-M, Camarda-R and Rizzolatti-G Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J-Comp-Neurol. 338: 114-140, 1993
Inase-M, Tokuno-H, Nambu-A, Akazawa-T and Takada-M Origin of thalamocortical projections to the presupplementary motor area (pre-SMA) in the macaque monkey. Neurosci-Res. 25: 217-227, 1996
Alexander-GE and Crutcher-MD Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J-Neurophysiol. 64: 133-150, 1990
Matsuzaka-Y, Aizawa-H and Tanji-J A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J-Neurophysiol. 68: 653-662, 1992
Matsuzaka-Y and Tanji-J Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. J-Neurophysiol. 76: 2327-2342, 1996
Shima-K, Mushiake-H, Saito-N and anji-J Role for cells in the presupplementary motor area in updating motor plans. Proc-Natl-Acad-Sci-U-S-A 93: 8694-8698, 1996
Nakamura-K, Sakai-K and Hikosaka-O Neuronal activity in medial frontal cortex during learning of sequential procedures. J-Neurophysiol. 80: 2671-2687, 1998
Isoda-M and Hikosaka-O Switching from automatic to controlled action by monkey medial frontal cortex. Nat-Neurosci. 10: 240-248, 2007.
Rushworth-MF, Hadland-KA, Paus-T and Sipila-PK Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J-Neurophysiol. 87: 2577-2592, 2002
Hikosaka-O, Sakai-K, Miyauchi-S, Takino-R, Sasaki-Y and Putz-B Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J-Neurophysiol. 76: 617-621, 1996
Sakai-K, Hikosaka-O, Miyauchi-S, Takino-R, Sasaki-Y and Putz-B Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J-Neurosci. 18: 1827-1840, 1998
Sakai-K, Hikosaka-O, Miyauchi-S, Sasaki-Y, Fujimaki-N and Putz-B Presupplementary motor area activation during sequence learning reflects visuo-motor association. J-Neurosci. 19 RC1, 1999
Meister-I, Krings-T, Foltys-H, Boroojerdi-B, Muller-M, Topper-R and Thron-A Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization. Hum-Brain-Mapp. 25: 345-352, 2005
Nakamura-K, Sakai-K and Hikosaka-O Neuronal activity in medial frontal cortex during learning of sequential procedures. J-Neurophysiol. 80: 2671-2687, 1998
Nakamura-K, Sakai-K and Hikosaka-O Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. J-Neurophysiol. 82: 1063-1068, 1999
Tanji-J Sequential organization of multiple movements: involvement of cortical motor areas. Annu-Rev-Neurosci. 24: 631-651, 2001
Mita-A, Mushiake-H, Shima-K, Matsuzaka-Y and Tanji-J Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat-Neurosci. 12: 502-507, 2009
Yoshida-K, Saito-N, Iriki-A and Isoda-M Representation of others' action by neurons in monkey medial frontal cortex. Curr-Biol. 21: 249-253, 2011