「大脳皮質の局所神経回路」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の9版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/yoshiyukikubota 窪田芳之]、[http://researchmap.jp/yasuokawaguchi 川口泰雄]</font><br>
<font size="+1">[http://researchmap.jp/yoshiyukikubota 窪田芳之]、[http://researchmap.jp/yasuokawaguchi 川口泰雄]</font><br>
''自然科学研究機構 生理学研究所 大[[脳神経]]回路論研究部門''<br>
''自然科学研究機構 生理学研究所 大[[脳神経]]回路論研究部門''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2012年6月6日 原稿完成日:2013年XX月XX日<br>
DOI:<selfdoi /> 原稿受付日:2012年6月6日 原稿完成日:2014年1月14日 更新日:2016年2月13日 更新日:2021年6月15日<br>
担当編集委員:[http://www.phy.med.kyoto-u.ac.jp/dw.html 渡辺 大](京都大学大学院 生命科学研究科認知情報学講座・医学研究科生体情報科学講座)<br>
担当編集委員:[http://researchmap.jp/keijitanaka 田中 啓治](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>


[[Image:皮質局所神経回路 図1.png|thumb|250px|<b>図1.Minicolumn構造の概略</b>]] [[Image:皮質局所神経回路 図2.png|thumb|250px|<b>図2.大脳皮質視覚野V1の信号の流れ</b>]] [[Image:皮質局所神経回路 図3-1.png|thumb|250px|<b>図3.大脳皮質局所神経回路概略図</b><br>LS: late spiking, FS: fast spiking, RS/BSNP: regular spiking/burst spiking, CCK: コレシストキニン]] [[Image:皮質局所神経回路 図4.png|thumb|250px|<b>図4.5層の錐体細胞の2つのサブタイプ</b><br>CCS: crossed-corticostriatal cell (CCS細胞)、CPn: corticopontine cell (CPn細胞)]] [[Image:皮質局所神経回路 図5.png|thumb|250px|<b>図5.視床皮質神経線維の分布</b><br>小胞型グルタミン酸トランスポーター Type 2 (VGLUT2)による免疫染色像。]]  
[[Image:皮質局所神経回路 図1.png|thumb|250px|<b>図1.Minicolumn構造の概略</b><ref name="ref4"><pubmed>8822167</pubmed></ref>]]  
[[Image:皮質局所神経回路 図2.png|thumb|250px|<b>図2.大脳皮質視覚野V1の信号の流れ</b>]]  
[[Image:皮質局所神経回路 図3-1.png|thumb|250px|<b>図3.大脳皮質局所神経回路概略図</b><br>LS: late spiking, FS: fast spiking, RS/BSNP: regular spiking/burst spiking, CCK: コレシストキニン]]  
[[Image:皮質局所神経回路 図4.png|thumb|250px|<b>図4.5層の錐体細胞の2つのサブタイプ</b><br>CCS: crossed-corticostriatal cell (CCS細胞)、CPn: corticopontine cell (CPn細胞)<ref name="ref12"><pubmed>21753015</pubmed></ref>]]  
[[Image:皮質局所神経回路 図5.png|thumb|250px|<b>図5.視床皮質神経線維の分布</b><br>小胞型グルタミン酸トランスポーター Type 2 (VGLUT2)による免疫染色像<ref name="ref7"><pubmed>17267569</pubmed></ref>。]]  


英語名:cortical local microcircuit  
英語名:cortical local microcircuit  


{{box|text=
{{box|text=
 [[大脳皮質]]には、80個程度の[[神経細胞]]で構成される[[ミニ円柱構造]]と呼ばれる最小単位の局所神経回路があり、その単位神経回路が多数並列的に存在する事で、概算で神経細胞26億個<ref name="ref1"><pubmed>4165856</pubmed></ref>([[ヒト]]の場合)により構成される大脳皮質の神経回路が作られている。
 大脳皮質はヒトが生きて行く上で必要な高次脳機能を司る。興奮性の錐体細胞と、それを抑制性に制御する非錐体細胞が、他の皮質領野や皮質下の視床など様々な場所からの入力を統合処理し、その複雑な機能を実現している。1層から6層まであり、各層ごとに特有の入出力構造を持つ。神経細胞は高密度に分布しており、ヒトの大脳皮質には1立方ミリ容積あたり、1万6千個の神経細胞と1億3千万個を超えるシナプス構造、齧歯類の大脳皮質には、8万個の神経細胞と10億個を上回る数のシナプス構造が推定されている。
}}
}}


22行目: 26行目:


== 局所神経回路の構造  ==
== 局所神経回路の構造  ==
 大脳皮質の局所神経回路は、錐体細胞、非錐体細胞、他の大脳皮質や[[視床]]からの興奮性入力線維、[[中脳]]の[[縫線核]](raphe nucleus)からの[[セロトニン]]線維、[[大脳基底核]](basal nucleus)からの[[アセチルコリン]]線維、[[腹側被蓋野]](ventral tegmental area)からの[[ドーパミン]]線維等の求心性線維等から構成される。錐体細胞は、大脳皮質の興奮性出力信号細胞であり、2/3層、5層、6層に分布している。4層にある興奮性細胞は、主に[[有棘星状細胞]]([[spiny stellate細胞]])や[[星状錐体細胞]]([[Star pyramid細胞]])である。これらの興奮性神経細胞は、層毎に、入力源や出力先が異なる事が知られている(図2)。それらの興奮性出力細胞の活動を抑制性非錐体細胞が[[抑制性神経伝達物質|抑制性の伝達物質]][[GABA]]による作用で抑制し制御する。抑制性非錐体細胞は、1層から6層まで分布しており、形態や[[発火]]特性、発現する[[神経伝達物質]]の異なるサブタイプが多く存在する<ref name="ref6"><pubmed>21220766</pubmed></ref>(図3)。これらの抑制性非錐体細胞のサブタイプは、シナプス結合して抑制作用を及ぼすターゲットの場所が異なる事<ref name="ref7"><pubmed>17267569</pubmed></ref>、活動様式が異なる事が知られており<ref name="ref8"><pubmed>18599766</pubmed></ref>、局所神経回路の中での役割が異なると考えられている<ref name="ref9"><pubmed>9276173</pubmed></ref>。さらに、外部からの興奮性信号と縫線核等それ以外の活動を調整する信号等が複雑に作用し合う。
 大脳皮質の局所神経回路は、錐体細胞、非錐体細胞、他の大脳皮質や[[視床]]からの興奮性入力線維、[[中脳]]の[[縫線核]](raphe nucleus)からの[[セロトニン]]線維、[[大脳基底核]](basal nucleus)からの[[アセチルコリン]]線維、[[腹側被蓋野]](ventral tegmental area)からの[[ドーパミン]]線維等の求心性線維等から構成される。錐体細胞は、大脳皮質の興奮性出力信号細胞であり、2/3層、5層、6層に分布している。4層にある興奮性細胞は、主に[[有棘星状細胞]]([[spiny stellate細胞]])や[[星状錐体細胞]]([[Star pyramid細胞]])である。これらの興奮性神経細胞は、層毎に、入力源や出力先が異なる事が知られている(図2)。それらの興奮性出力細胞の活動を抑制性非錐体細胞が[[抑制性神経伝達物質|抑制性の伝達物質]][[GABA]]による作用で抑制し制御する。抑制性非錐体細胞は、1層から6層まで分布しており、形態や[[発火]]特性、発現する[[神経伝達物質]]の異なるサブタイプが多く存在する<ref name="ref6"><pubmed>21220766</pubmed></ref>(図3)。これらの抑制性非錐体細胞のサブタイプは、シナプス結合して抑制作用を及ぼすターゲットの場所が異なる事<ref name="ref7"><pubmed>17267569</pubmed></ref>、活動様式が異なる事が知られており<ref name="ref8"><pubmed>18599766</pubmed></ref>、局所神経回路の中での役割が異なると考えられている<ref name="ref9"><pubmed>9276173</pubmed></ref> <ref name=ref009><pubmed>24650498</pubmed></ref>。さらに、外部からの興奮性信号と縫線核等それ以外の活動を調整する信号等が複雑に作用し合う。


== 興奮性結合  ==
== 興奮性結合  ==
28行目: 32行目:
 大脳皮質の局所神経回路の[[興奮性シナプス]]結合の中では、錐体細胞間のシナプス結合と、視床からの求心性神経線維から錐体細胞へのシナプス結合の性質が比較的良く知られている。  
 大脳皮質の局所神経回路の[[興奮性シナプス]]結合の中では、錐体細胞間のシナプス結合と、視床からの求心性神経線維から錐体細胞へのシナプス結合の性質が比較的良く知られている。  


 皮質の興奮性細胞間のシナプス結合様式は、近年、ペア電気生理記録法により詳細に検討され報告されている<ref name="ref10"><pubmed>12466210</pubmed></ref>。それによると、4層の興奮生細胞から2/3層の細胞へシナプス結合があり、また4層の興奮性細胞は他の4層の細胞とも結合が強い。さらに4層の興奮性細胞は6層にも少ないながら結合している。2/3層の錐体細胞は、同じ層の中でシナプス結合を作り、5層の錐体細胞に最も強いシナプス結合で信号を送る。5層の錐体細胞は同じ層の錐体細胞と結合し、6層の錐体細胞にも信号を送る。6層の錐体細胞は、4層5層6層の錐体細胞にもシナプス結合する事が報告されている。5層の錐体細胞間の結合特性はさらに解析が進んでいる。5層錐体細胞は、対側皮質へ投射するもの投射するもの(commissural cell; [[COM細胞]])と橋核へ行くもの(corticopontine cell; [[CPn細胞]])に分かれる。前頭葉の大脳皮質のCOM細胞には、対側[[線条体]]にも投射するもの(crossed-corticostriatal cell; CCS細胞)がある。5層錐体細胞投射サブタイプの間で、樹状突起形態や生理的性質が[[分化]]している(図4)。そしてこれらサブタイプの組み合わせで、結合方向性、相互結合頻度、短期可塑性が異なっている。<ref name="ref11"><pubmed>16624959</pubmed></ref> <ref name="ref12"><pubmed>21753015</pubmed></ref> <ref name=ref013><pubmed>21389241</pubmed></ref> <ref name="ref13">'''川口 泰雄'''<br>大脳皮質内興奮性回路の機能分化<br>“ブレインサイエンス・レビュー 2009”(伊藤正男・川合述史編集)クバプロ、東京</ref>。  
 皮質の興奮性細胞間のシナプス結合様式は、近年、ペア電気生理記録法により詳細に検討され報告されている<ref name="ref10"><pubmed>12466210</pubmed></ref>。それによると、4層の興奮生細胞から2/3層の細胞へシナプス結合があり、また4層の興奮性細胞は他の4層の細胞とも結合が強い。さらに4層の興奮性細胞は6層にも少ないながら結合している。2/3層の錐体細胞は、同じ層の中でシナプス結合を作り、5層の錐体細胞に最も強いシナプス結合で信号を送る。5層の錐体細胞は同じ層の錐体細胞と結合し、6層の錐体細胞にも信号を送る。6層の錐体細胞は、4層5層6層の錐体細胞にもシナプス結合する事が報告されている。5層の錐体細胞間の結合特性はさらに解析が進んでいる。5層錐体細胞は、対側皮質へ投射するもの投射するもの(commissural cell; [[COM細胞]])と橋核へ行くもの(corticopontine cell; [[CPn細胞]])に分かれる。前頭葉の大脳皮質のCOM細胞には、対側[[線条体]]にも投射するもの(crossed-corticostriatal cell; CCS細胞)がある。5層錐体細胞投射サブタイプの間で、樹状突起形態や生理的性質が[[分化]]している(図4)。そしてこれらサブタイプの組み合わせで、結合方向性、相互結合頻度、短期可塑性が異なっている。<ref name="ref11"><pubmed>16624959</pubmed></ref> <ref name="ref12"><pubmed>21753015</pubmed></ref> <ref name=ref013><pubmed>21389241</pubmed></ref> <ref name="ref13">'''川口 泰雄'''<br>大脳皮質内興奮性回路の機能分化<br>“ブレインサイエンス・レビュー 2009”(伊藤正男・川合述史編集)クバプロ、東京</ref>。  


 一方、[[視床皮質神経線維]]を選択的に発現する[[小胞型グルタミン酸トランスポーター]] Type 2 ([[VGLUT2]])をマーカーとして使うことで、視床由来神経線維の神経末端の皮質内分布と皮質細胞への結合様式が明らかとなった<ref name="ref14"><pubmed>12949784</pubmed></ref>。前頭葉では、1層上部、4層、5層下部(5b層)に、より多くの視床皮質線維の神経末端が分布している(図5)。その[[神経終末]]の大半は錐体細胞の[[棘突起]]に入力し、その棘突起の1割には[[抑制性シナプス]]が同時に入力し、視床からの興奮性信号を選択的に抑制すると考えられている<ref name=ref7 /> <ref><pubmed>23661763</pubmed></ref>。
 一方、[[視床皮質神経線維]]を選択的に発現する[[小胞型グルタミン酸トランスポーター]] Type 2 ([[VGLUT2]])をマーカーとして使うことで、視床由来神経線維の神経末端の皮質内分布と皮質細胞への結合様式が明らかとなった<ref name="ref14"><pubmed>12949784</pubmed></ref>。前頭葉では、1層上部、4層、5層下部(5b層)に、より多くの視床皮質線維の神経末端が分布している(図5)。その[[神経終末]]の大半は錐体細胞の[[棘突起]]に入力し、その棘突起の1割には[[抑制性シナプス]]が同時に入力し、視床からの興奮性信号を選択的に抑制すると考えられている<ref name=ref7 /> <ref><pubmed>23661763</pubmed></ref>。


== 抑制性結合  ==
== 抑制性結合  ==
 GABAを伝達物質とする抑制性非錐体細胞には少なくとも十数種類のサブタイプがあり、それぞれ異なった役割で皮質活動を制御する(図3)<ref name=ref013 /> <ref name="ref15"><pubmed>9651498</pubmed></ref> <ref name="ref16">'''窪田 芳之'''<br>皮質局所神経回路の興奮性抑制性入力特性<br>“ブレインサイエンス・レビュー 2008”(伊藤正男・川合述史編集)クバプロ、東京、p45-72</ref>。
 GABAを伝達物質とする抑制性非錐体細胞には少なくとも十数種類のサブタイプがあり、それぞれ異なった役割で皮質活動を制御する(図3)<ref name=ref009><pubmed>24650498</pubmed></ref> <ref name=ref013 /> <ref name="ref15"><pubmed>9651498</pubmed></ref> <ref name="ref16">'''窪田 芳之'''<br>皮質局所神経回路の興奮性抑制性入力特性<br>“ブレインサイエンス・レビュー 2008”(伊藤正男・川合述史編集)クバプロ、東京、p45-72</ref> <ref name=ref002><pubmed>26612957</pubmed></ref> <ref name=ref003><pubmed>23313910</pubmed></ref>。


===バスケット細胞===
===バスケット細胞===
 最も多数をしめるサブタイプは [[バスケット細胞]]であり、fast spiking (FS)型の発火様式を示す。非錐体細胞のおよそ3割程度をしめる集団で、互いに[[ギャップ結合]]([[電気シナプス]])で結合し、錐体細胞等の[[細胞体]]や樹状突起の細胞体近位部に抑制性シナプスを形成し、錐体細胞の発火を押さえたり、発火のタイミングの制御をする。
 最も多数をしめるサブタイプは [[バスケット細胞]]であり、fast spiking (FS)型の発火様式を示す。非錐体細胞のおよそ3割程度をしめる集団で、互いに[[ギャップ結合]]([[電気シナプス]])で結合し、錐体細胞等の[[細胞体]]や樹状突起の細胞体近位部に抑制性シナプスを形成し、錐体細胞の発火を押さえたり、発火のタイミングの制御をする<ref name=ref001><pubmed>26142457</pubmed></ref>。


===シャンデリア細胞===
===シャンデリア細胞===
56行目: 60行目:
== シナプス結合選択性 ==
== シナプス結合選択性 ==


 大脳新皮質2/3層内の錐体細胞のうち軸索側枝により直接結合している細胞同士は、直接結合していない細胞同士より、共通の4層興奮性神経細胞からの興奮入力をより多く受ける傾向がある。一方、5層から2/3層内の錐体細胞への興奮性入力や4層から2/3層内の錐体細胞への抑制性入力に関しては、このような選択的な入力パターンは見られない<ref name=ref28><pubmed>15729343</pubmed></ref>。さらに、抑制性細胞サブタイプであるパルブアルブミン陽性のFS細胞やソマトスタチン陽性の[[マルチノッティ細胞]]では、周囲にある錐体細胞を選択性なく神経支配している事が知られている<ref name=ref29><pubmed>21435562</pubmed></ref> <ref name=ref30><pubmed>21917809</pubmed></ref>。錐体細胞からの興奮性結合の一部には層やターゲットの細胞タイプによる選択性がある一方、抑制性細胞は周辺の細胞にランダムに結合していると考えられる。
 大脳新皮質2/3層内の錐体細胞のうち軸索側枝により直接結合している細胞同士は、直接結合していない細胞同士より、共通の4層興奮性神経細胞からの興奮入力をより多く受ける傾向がある。一方、5層から2/3層内の錐体細胞への興奮性入力や4層から2/3層内の錐体細胞への抑制性入力に関しては、このような選択的な入力パターンは見られない<ref name=ref28><pubmed>15729343</pubmed></ref>。さらに、抑制性細胞サブタイプであるパルブアルブミン陽性のFS細胞やソマトスタチン陽性の[[マルチノッチ細胞]]では、周囲にある錐体細胞を選択性なく神経支配している事が知られている<ref name=ref29><pubmed>21435562</pubmed></ref> <ref name=ref30><pubmed>21917809</pubmed></ref>。錐体細胞からの興奮性結合の一部には層やターゲットの細胞タイプによる選択性がある一方、抑制性細胞は周辺の細胞にランダムに結合していると考えられる。


==関連項目==
==関連項目==