「微小管」の版間の差分

72行目: 72行目:


====軸索と樹状突起における微小管====
====軸索と樹状突起における微小管====
 軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。
 軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>(図A)。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。


 伸長している軸索の[[細胞体]]に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたチュブリンで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないチュブリンに富んでいる<ref><pubmed> 20541813</pubmed></ref>。特に[[成長円錐]](growth cone)では微小管は非常に動的で形態も複雑である<ref><pubmed> 19377501</pubmed></ref>。
 伸長している軸索の[[細胞体]]に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたチュブリンで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないチュブリンに富んでいる<ref><pubmed> 20541813</pubmed></ref>。特に[[成長円錐]](growth cone)では微小管は非常に動的で形態も複雑である<ref><pubmed> 19377501</pubmed></ref>。


 樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref>[[ショウジョウバエ]]のニューロンでは、樹状突起の分岐点に存在する[[ゴルジ体]](Golgi outpostと呼ばれる)から微小管が伸長し、樹状突起の形態形成に重要な役割を果たしていることが明らかになっている<ref><pubmed> 23217741</pubmed></ref>。哺乳類のニューロンにおいても樹状突起の分岐点にGolgi outpostが見つかっているが、そこから微小管の伸長が起こるかは検討されていない<ref><pubmed> 16337914</pubmed></ref>。また、以前は樹状突起の[[棘突起]]([[spine]])には微小管は存在しないと考えられていたが、近年の研究で棘突起内に非常に動的な微小管が存在することが明らかになり、棘突起形成に関与していることが示されている。
 樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref>(図B)。[[ショウジョウバエ]]のニューロンでは、樹状突起の分岐点に存在する[[ゴルジ体]](Golgi outpostと呼ばれる)から微小管が伸長し、樹状突起の形態形成に重要な役割を果たしていることが明らかになっている<ref><pubmed> 23217741</pubmed></ref>。哺乳類のニューロンにおいても樹状突起の分岐点にGolgi outpostが見つかっているが、そこから微小管の伸長が起こるかは検討されていない<ref><pubmed> 16337914</pubmed></ref>。また、以前は樹状突起の[[棘突起]]([[spine]])には微小管は存在しないと考えられていたが、近年の研究で棘突起内に非常に動的な微小管が存在することが明らかになり、棘突起形成に関与していることが示されている。


 前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばタウは軸索に、[[MAP2]]は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、[[MAP1A]]が成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。
 前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばタウは軸索に、[[MAP2]]は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、[[MAP1A]]が成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。
56

回編集