「成長円錐」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、軸索から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部におけるチューブリンの付加は神経突起の伸長を、脱重合は神経突起の退縮を引き起こす。中心部には比較的安定なアクチン繊維も存在し<ref><pubmed> 14659092 </pubmed></ref>、細胞骨格の他にも[[ミトコンドリア]]や[[小胞体]]などの[[細胞小器官]]、[[膜小胞]]などを多く含んでいる 。 軸索内の微小管は[[Microtubule-associated proteins]](MAPs)により束ねられているが、中心部では先端部がほどけ、一部の微小管は周辺部に向かって放射状に広がっている。  
中心部は軸索からつながった成長円錐中央部の比較的厚みのある部分で、軸索から伸びている安定な微小管が主な構成成分である(図2)。中心部は神経突起内の微小管束の末端部分に相当し、中心部におけるチューブリンの付加は神経突起の伸長を、脱重合は神経突起の退縮を引き起こす。中心部には比較的安定なアクチン繊維も存在し<ref><pubmed> 14659092 </pubmed></ref>、細胞骨格の他にも[[ミトコンドリア]]や[[小胞体]]などの[[細胞小器官]]、[[膜小胞]]などを多く含んでいる 。 軸索内の微小管は[[Microtubule-associated proteins]](MAPs)により束ねられているが、中心部では先端部がほどけ、一部の微小管は周辺部に向かって放射状に広がっている。  


=== 周辺部におけるアクチン繊維と微小管の役割 ===
=== 周辺部におけるアクチン繊維と微小管の役割 ===


周辺部のアクチン繊維は糸状仮足、葉状仮足とも[[プラス端]]を外側に向けて配向している。先端部での単量体アクチンの重合によるアクチン繊維の伸長は、糸状仮足や葉状仮足を周辺部に向けて拡大させ、成長円錐の形質膜は前方に推し進められる。すなわち、周辺部におけるアクチン繊維の重合-脱重合の制御は成長円錐の運動性を規定する大きな要因の一つである。
周辺部のアクチン繊維は糸状仮足、葉状仮足とも[[プラス端]]を外側に向けて配向している。先端部での単量体アクチンの重合によるアクチン繊維の伸長は、糸状仮足や葉状仮足を周辺部に向けて拡大させ、成長円錐の形質膜は前方に推し進められる。すなわち、周辺部におけるアクチン繊維の重合-脱重合の制御は成長円錐の運動性を規定する大きな要因の一つである。  


周辺部の微小管もアクチン繊維と同様にプラス端を外側に向けて配向しており、周辺部への接着分子や膜成分の輸送をガイドする足場として機能すると考えられている。この微小管依存的な小胞輸送経路は成長円錐の旋回運動に重要で、周辺部における微小管の空間的な制御が成長円錐の旋回方向を規定する要因の一つと考えられている。
周辺部の微小管もアクチン繊維と同様にプラス端を外側に向けて配向しており、周辺部への接着分子や膜成分の輸送をガイドする足場として機能すると考えられている。この微小管依存的な小胞輸送経路は成長円錐の旋回運動に重要で、周辺部における微小管の空間的な制御が成長円錐の旋回方向を規定する要因の一つと考えられている。  


さらに、周辺部においてアクチン繊維と微小管は両結合性分子を介して相互作用しており、このアクチン繊維-微小管の相互作用も成長円錐の運動性に重要であると考えられている。両結合性分子としてShot、Dpod-1等が同定されており、これらの分子をを欠く神経細胞では軸索の伸長や走行に異常を示す。  
さらに、周辺部においてアクチン繊維と微小管は両結合性分子を介して相互作用しており、このアクチン繊維-微小管の相互作用も成長円錐の運動性に重要であると考えられている。両結合性分子としてShot、Dpod-1等が同定されており、これらの分子をを欠く神経細胞では軸索の伸長や走行に異常を示す。  
99行目: 99行目:
=== 成長円錐の旋回運動を制御する細胞内シグナル経路  ===
=== 成長円錐の旋回運動を制御する細胞内シグナル経路  ===


上述のように成長円錐の運動性は細胞骨格、接着分子とそのリサイクリングにより規定されるが、成長円錐の前進速度に空間的な非対称性が生じれば、成長円錐は全体として旋回運動を呈することになる。実際に、軸索ガイダンス因子が制御する成長円錐の旋回運動にもRhoファミリー低分子量Gタンパク質、ADF/cofilin、Ena/Vasp、APCなどの細胞骨格制御分子、CalpainやFAK、Srcチロシンキナーゼによる細胞接着の制御が関与することが明らかにされている。
上述のように成長円錐の運動性は細胞骨格、接着分子とそのリサイクリングにより規定されるが、成長円錐の前進速度に空間的な非対称性が生じれば、成長円錐は全体として旋回運動を呈することになる。実際に、軸索ガイダンス因子が制御する成長円錐の旋回運動にもRhoファミリー低分子量Gタンパク質、ADF/cofilin、Ena/Vasp、APCなどの細胞骨格制御分子、CalpainやFAK、Srcチロシンキナーゼによる細胞接着の制御が関与することが明らかにされている。  


軸索ガイダンスの細胞内シグナルの研究では、Pooのグループによって開発されたターニングアッセイと呼ばれる実験系が用いられ、この手法は、培養条件下でガラスピペットからガイダンス因子をパルス状に放出し、成長円錐近傍にガイダンス因子の濃度勾配を人工的に作り出し、それに対する成長円錐の挙動を観察するものである。このターニングアッセイを用いた解析では、しばしば特定のシグナルカスケードを遮断すると軸索ガイダンス因子に対する誘引-反発の応答が逆転する現象が見られる。例えば、ネトリン-1及びBDNFの濃度勾配に対する成長円錐の誘引は、cAMPのアンタゴニストであるRp-cAMPsの投与により反発へと逆転する。これは、生体内において、成長円錐は様々な軸索ガイダンス因子のシグナルを受容しながらそのシグナルを統合し進行する経路を選択することを反映しており、成長円錐の旋回方向は様々な細胞内シグナル伝達経路の複雑なクロストークの結果決定されることを示唆する。近年、成長円錐の旋回方向(誘引 or 反発)を決定する分子メカニズムの理解が急速に進んでおり、本項では、旋回方向を規定する分子メカニズムについて概説する。  
軸索ガイダンスの細胞内シグナルの研究では、Pooのグループによって開発されたターニングアッセイと呼ばれる実験系が用いられ、この手法は、培養条件下でガラスピペットからガイダンス因子をパルス状に放出し、成長円錐近傍にガイダンス因子の濃度勾配を人工的に作り出し、それに対する成長円錐の挙動を観察するものである。このターニングアッセイを用いた解析では、しばしば特定のシグナルカスケードを遮断すると軸索ガイダンス因子に対する誘引-反発の応答が逆転する現象が見られる。例えば、ネトリン-1及びBDNFの濃度勾配に対する成長円錐の誘引は、cAMPのアンタゴニストであるRp-cAMPsの投与により反発へと逆転する。これは、生体内において、成長円錐は様々な軸索ガイダンス因子のシグナルを受容しながらそのシグナルを統合し進行する経路を選択することを反映しており、成長円錐の旋回方向は様々な細胞内シグナル伝達経路の複雑なクロストークの結果決定されることを示唆する。近年、成長円錐の旋回方向(誘引 or 反発)を決定する分子メカニズムの理解が急速に進んでおり、本項では、旋回方向を規定する分子メカニズムについて概説する。  
161

回編集