「海馬」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
22行目: 22行目:
 海馬が知的機能や記憶に関与するとの示唆は、Brown とSchäfer (1888)の実験に見られる。海馬を含む側頭葉内側部を両側性に傷害したアカゲザルでは、凶暴だった性格がおとなしくなった。視・聴・触・味・嗅覚の感覚それ自体にはには異常を認めないが、音や見える物の意味が理解できない。見慣れた物を与えても、はじめて接する物のごとく口にいれたり、嗅いだりして確かめ、しばらくして同じ物を与えてもやはり同様の行動を何回もくりかえした。Klüver とBucy (1939)はアカゲザルの海馬・鈎の両側切除術によって、思考脱線、精神盲(視覚失認)、易馴応性、性欲高進などの症状が起こることを観察し、Brown らの所見を追認した。
 海馬が知的機能や記憶に関与するとの示唆は、Brown とSchäfer (1888)の実験に見られる。海馬を含む側頭葉内側部を両側性に傷害したアカゲザルでは、凶暴だった性格がおとなしくなった。視・聴・触・味・嗅覚の感覚それ自体にはには異常を認めないが、音や見える物の意味が理解できない。見慣れた物を与えても、はじめて接する物のごとく口にいれたり、嗅いだりして確かめ、しばらくして同じ物を与えてもやはり同様の行動を何回もくりかえした。Klüver とBucy (1939)はアカゲザルの海馬・鈎の両側切除術によって、思考脱線、精神盲(視覚失認)、易馴応性、性欲高進などの症状が起こることを観察し、Brown らの所見を追認した。


 ヒトでは、Bechterew (1899)、Grünthal (1947)、GleesとGriffith (1952)らが、近時記憶に著しい障害のあった患者の脳を死後剖検し、両側の海馬や海馬傍回に器質性病変のあることを報告した。そして、ScovilleとMilner (1957)が難治性てんかん患者の治療目的で、両側側頭葉内側部(扁桃体、海馬傍回、海馬前方2/3 )の切除術を行ったところ、強度の順行性記憶障害を惹起したことを報告した。患者らは知能指数にはまったく問題がみられないが、術後の事象の記憶が全然できない。人の顔や名前は全く記憶することができず、受けた指示の内容だけでなく指示されたことも覚えていない。また術前3年までぐらいの逆行性健忘も見られた。一方、数年より以前の事象は思い出すことが可能で、以来、海馬が近時記憶と長期記憶の形成(記銘)の部位として注目されるようになった。海馬の構造と機能についての詳細は文献1〜4(英文)、文献5〜9(和文)、Website は文献14を参照。
 ヒトでは、Bechterew (1899)、Grünthal (1947)、GleesとGriffith (1952)らが、近時記憶に著しい障害のあった患者の脳を死後剖検し、両側の海馬や海馬傍回に器質性病変のあることを報告した。そして、ScovilleとMilner (1957)が難治性てんかん患者の治療目的で、両側側頭葉内側部(扁桃体、海馬傍回、海馬前方2/3 )の切除術を行ったところ、強度の順行性記憶障害を惹起したことを報告した。患者らは知能指数にはまったく問題がみられないが、術後の事象の記憶が全然できない。人の顔や名前は全く記憶することができず、受けた指示の内容だけでなく指示されたことも覚えていない。また術前3年までぐらいの逆行性健忘も見られた。一方、数年より以前の事象は思い出すことが可能で、以来、海馬が近時記憶と長期記憶の形成(記銘)の部位として注目されるようになった。海馬の構造と機能についての詳細は文献<ref name=ref1>'''Amaral DG, Insausti R.'''<br>Hippocampal formation. In: Paxinos G, editor. The Human Nervous System. <br>San Diego: Academic Press. pp. 711-755. 1990.</ref> <ref name=ref2>'''Amaral DG, Witter MP.'''<br>Hippocampal formation. Paxinos G, ed. "The Rat Nervous System". <br>San Diego: Academic Press. pp. 443-493. 1995.</ref> <ref name=ref3><pubmed>8915675</pubmed></ref> <ref name=ref4>'''Gloor P'''<br>The Temporal Lobe and Limbic System. <br>Oxford University Press, New York, 1997 </ref>(英文)、文献<ref name=ref5>'''石塚典生'''<br>海馬の細胞構築と神経結合<br>神経進歩 38:5-22 (1994)</ref> <ref name=ref6>'''石塚典生'''<br>海馬の構造と線維連絡<br>脳と神経 50:881-892 (1998)</ref> <ref name=ref7>'''石塚典生'''<br>記憶のしくみ 解剖学的面から<br>CLINICAL NEUROSCIENCE 16:130-134 (1998)</ref> <ref name=ref8>'''石塚典生'''<br>大脳辺縁系の神経結合と細胞構築<br>神経進歩 50:7-17 (2006)</ref> <ref name=ref9>'''石塚典生'''<br>海馬領域における縦走性線維投射<br>BRAIN and NERVE 60:737-745 (2008)</ref>(和文)、Websiteは文献<ref name=ref14>http://gaya.jp/research/index.htm 池谷裕二:“海馬”を極める</ref>を参照。


== 海馬と記憶 ==
== 海馬と記憶 ==
44行目: 44行目:
=== 海馬体の内部回路===  
=== 海馬体の内部回路===  


[[image:海馬3.png|thumb|300px|'''図3.海馬体各領域の連続する結合と出力先を示す図'''<br>文献8より改変]]
[[image:海馬3.png|thumb|300px|'''図3.海馬体各領域の連続する結合と出力先を示す図'''<br>文献<ref name=ref8 />より改変]]


[[image:海馬4.png|thumb|300px|'''図4.CA1, CA3錐体細胞の樹状突起分布'''<br>文献11より改変]]
[[image:海馬4.png|thumb|300px|'''図4.CA1, CA3錐体細胞の樹状突起分布'''<br>文献<ref name=ref11><pubmed>8576427</pubmed></ref>より改変]]


[[image:海馬5.png|thumb|300px|'''図5.CA3領域への各種入力の分布勾配を示す図''']]
[[image:海馬5.png|thumb|300px|'''図5.CA3領域への各種入力の分布勾配を示す図''']]


[[image:海馬6.png|thumb|300px|'''図6.CA3からCA1へのシャッファー側枝の分布を示す図'''<br>文献7より改変]]
[[image:海馬6.png|thumb|300px|'''図6.CA3からCA1へのシャッファー側枝の分布を示す図'''<br>文献<ref name=ref7 />より改変]]


 他の皮質領域と同様に、海馬体にも興奮性の結合と抑制性の結合が存在する。興奮性ニューロンの概数は、SDラットで、歯状回顆粒細胞が100万、CA3錐体細胞が33万、CA1錐体細胞が42万、海馬台錐体細胞が13万という。ヒトでは歯状回顆粒細胞が880万、CA3錐体細胞が232万、CA1錐体細胞が472万である。抑制性細胞の数はよくわかっていない。
 他の皮質領域と同様に、海馬体にも興奮性の結合と抑制性の結合が存在する。興奮性ニューロンの概数は、SDラットで、歯状回顆粒細胞が100万、CA3錐体細胞が33万、CA1錐体細胞が42万、海馬台錐体細胞が13万という。ヒトでは歯状回顆粒細胞が880万、CA3錐体細胞が232万、CA1錐体細胞が472万である。抑制性細胞の数はよくわかっていない。
60行目: 60行目:
 CA3への入力は、分子層に貫通線維、透明層に苔状線維、上昇層に内側中隔核からの線維、放線層と上昇層にCA3の連合線維と交連線維が終止する。乳頭体上核からの線維はCA2、CA3a の上昇層に多く終止する。樹状突起の総長と各層へ分布する部分突起長は細胞体の位置によって連続的に異なる(図4A-F)。総長は約7.5mm(CA3c:歯状回側F)から18.0mm(CA3a:CA1側B)である。CA2錐体細胞は分子層への樹状突起分布量が多く、嗅内野入力を最大に受容しているが、透明層を欠くから顆粒細胞からの情報を受けない(図4A)。これの対極にあるCA3cでは嗅内野入力の受容が最小で、分子層に全く突起を分布しないCA3c細胞(図4F)もある。そして、歯状回顆粒細胞からの入力はCA3cが最大に受ける。基底樹状突起長は、海馬采付着部 の細胞で最大で、CA1と歯状回の双方向へ向け漸減する。上昇層へは内側中隔核入力と同時に同側・対側のCA3錐体細胞からの投射があり、基底樹状突起長と入力の関係が一意には定まらない。放線層では、樹状突起部分長に各亜区分間の顕著な差は見られない。これらの収支の濃淡を様相を模式的に図5に示す。
 CA3への入力は、分子層に貫通線維、透明層に苔状線維、上昇層に内側中隔核からの線維、放線層と上昇層にCA3の連合線維と交連線維が終止する。乳頭体上核からの線維はCA2、CA3a の上昇層に多く終止する。樹状突起の総長と各層へ分布する部分突起長は細胞体の位置によって連続的に異なる(図4A-F)。総長は約7.5mm(CA3c:歯状回側F)から18.0mm(CA3a:CA1側B)である。CA2錐体細胞は分子層への樹状突起分布量が多く、嗅内野入力を最大に受容しているが、透明層を欠くから顆粒細胞からの情報を受けない(図4A)。これの対極にあるCA3cでは嗅内野入力の受容が最小で、分子層に全く突起を分布しないCA3c細胞(図4F)もある。そして、歯状回顆粒細胞からの入力はCA3cが最大に受ける。基底樹状突起長は、海馬采付着部 の細胞で最大で、CA1と歯状回の双方向へ向け漸減する。上昇層へは内側中隔核入力と同時に同側・対側のCA3錐体細胞からの投射があり、基底樹状突起長と入力の関係が一意には定まらない。放線層では、樹状突起部分長に各亜区分間の顕著な差は見られない。これらの収支の濃淡を様相を模式的に図5に示す。


 CA3 錐体細胞の出力は両側性で、Schaffer 側枝によってCA1 放線層と上昇層へ投射するとともに、CA3 領域へも連合性側枝を分布する(文献10)。 CA3cからは歯状回門へも少量の分布がある。さらに、両側性に外側中隔核に投射するが、海馬台や嗅内野には投射しない。Schaffer側枝は海馬長軸方向に5mm以上にわたり投射し(海馬の全長は約8mm)、CA3錐体細胞の細胞体の位置や投射レベルによってCA1 への終止部位が連続的・段階的に変化する(図6)。第一に、CA3cからは中隔方向へ投射が多く、軸索は主に放線層に分布して頂上樹状突起に終止する。反対に、CA3aからは側頭葉方向へ投射が多く、軸索は主に上昇層に分布し、基底樹状突起に終止する割合が多い。第二に、投射レベルが中隔側に行くほど終止部位がCA1近位部(CA3側)かつ海馬白板側に移行し、樹状突起の下方に終止するのに対し、投射レベルが側頭葉側ほどCA1遠位部(海馬台側)かつ放線層浅層へ終止する。CA3内の連合性軸索側枝は、CA3c錐体細胞ではCA3c域に限局して終止するのに対し、CA3a錐体細胞の軸索は横断面上でもCA3領域内に広く分布している。長軸方向の分布では、終止部位の頂上・基底方向への変移もCA1への投射様式と同様に見られる。
 CA3 錐体細胞の出力は両側性で、Schaffer 側枝によってCA1 放線層と上昇層へ投射するとともに、CA3 領域へも連合性側枝を分布する(文献<ref name=ref10><pubmed></pubmed></ref>)。 CA3cからは歯状回門へも少量の分布がある。さらに、両側性に外側中隔核に投射するが、海馬台や嗅内野には投射しない。Schaffer側枝は海馬長軸方向に5mm以上にわたり投射し(海馬の全長は約8mm)、CA3錐体細胞の細胞体の位置や投射レベルによってCA1 への終止部位が連続的・段階的に変化する(図6)。第一に、CA3cからは中隔方向へ投射が多く、軸索は主に放線層に分布して頂上樹状突起に終止する。反対に、CA3aからは側頭葉方向へ投射が多く、軸索は主に上昇層に分布し、基底樹状突起に終止する割合が多い。第二に、投射レベルが中隔側に行くほど終止部位がCA1近位部(CA3側)かつ海馬白板側に移行し、樹状突起の下方に終止するのに対し、投射レベルが側頭葉側ほどCA1遠位部(海馬台側)かつ放線層浅層へ終止する。CA3内の連合性軸索側枝は、CA3c錐体細胞ではCA3c域に限局して終止するのに対し、CA3a錐体細胞の軸索は横断面上でもCA3領域内に広く分布している。長軸方向の分布では、終止部位の頂上・基底方向への変移もCA1への投射様式と同様に見られる。


 c) CA1錐体細胞の軸索側枝は、上昇層には若干の終末分布があるが、放線層へは投射しない。また長軸方向へはほとんど投射せず、CA1錐体細胞間には連合性結合がほとんどない。終末は、錐体細胞層下部に位置する抑制性の籠細胞への終止が考えられる。CA1錐体細胞の樹状突起長は平均13.4mmである。樹状突起にある棘(スパイン)の分布密度は部分によって異なり、太い突起ではシャフトに棘が隠れるため、棘の総数を正確に数えることは困難であるが、層毎の棘分布密度と樹状突起の部分長から棘の総数を推定すると、1個のCA1錐体細胞は少なくも約15,000の棘を持つ。そして、約10%が分子層にある。樹状突起のシャフトに終わる抑制性シナプスの数は未だ概算されていない。
 c) CA1錐体細胞の軸索側枝は、上昇層には若干の終末分布があるが、放線層へは投射しない。また長軸方向へはほとんど投射せず、CA1錐体細胞間には連合性結合がほとんどない。終末は、錐体細胞層下部に位置する抑制性の籠細胞への終止が考えられる。CA1錐体細胞の樹状突起長は平均13.4mmである。樹状突起にある棘(スパイン)の分布密度は部分によって異なり、太い突起ではシャフトに棘が隠れるため、棘の総数を正確に数えることは困難であるが、層毎の棘分布密度と樹状突起の部分長から棘の総数を推定すると、1個のCA1錐体細胞は少なくも約15,000の棘を持つ。そして、約10%が分子層にある。樹状突起のシャフトに終わる抑制性シナプスの数は未だ概算されていない。
68行目: 68行目:
=== 海馬体の出力===  
=== 海馬体の出力===  


[[image:海馬7.png|thumb|300px|'''図7.出力から見た海馬体の層構造と内部結合'''<br>文献8より改変]]
[[image:海馬7.png|thumb|300px|'''図7.出力から見た海馬体の層構造と内部結合'''<br>文献<ref name=ref8 />より改変]]


 歯状回細胞、およびアンモン角錐体細胞の出力は皮質性投射であるのに対し、海馬台錐体細胞は皮質性投射に加えて皮質下(線条体、視床、視床下部、乳頭体)に投射する(図3,7)。海馬台錐体細胞層には、皮質下に投射する中隔側坐核(線条体)投射細胞、乳頭体内側核投射細胞、視床腹側前核投射細胞が、錐体細胞層の表層から深層へと層状に分布しており、大脳皮質V・VI層に見られる皮質下投射細胞の深浅配列順序と同じである(文献12)。
 歯状回細胞、およびアンモン角錐体細胞の出力は皮質性投射であるのに対し、海馬台錐体細胞は皮質性投射に加えて皮質下(線条体、視床、視床下部、乳頭体)に投射する(図3,7)。海馬台錐体細胞層には、皮質下に投射する中隔側坐核(線条体)投射細胞、乳頭体内側核投射細胞、視床腹側前核投射細胞が、錐体細胞層の表層から深層へと層状に分布しており、大脳皮質V・VI層に見られる皮質下投射細胞の深浅配列順序と同じである(文献<ref name=ref12><pubmed>11370013</pubmed></ref>)。


 海馬台からの皮質性投射は、ラットでは、嗅内野、嗅周皮質(近位部からのみ)、前海馬台、傍海馬台、顆粒性脳梁膨大後部皮質、前頭前野などへの投射がある。これらの投射は主に線条体投射細胞や乳頭体投射細胞から起こる。嗅内野へは、主にV, VI層に終止し、海馬台の近位部(CA1側)がLEAへ、遠位部がMEA内側部へ投射する。前海馬台、傍海馬台への投射にも局所対応結合が見られる。また、錐体細胞層の深部からはCA1へ戻る投射(再入線維:re-entrant fiber)がある。
 海馬台からの皮質性投射は、ラットでは、嗅内野、嗅周皮質(近位部からのみ)、前海馬台、傍海馬台、顆粒性脳梁膨大後部皮質、前頭前野などへの投射がある。これらの投射は主に線条体投射細胞や乳頭体投射細胞から起こる。嗅内野へは、主にV, VI層に終止し、海馬台の近位部(CA1側)がLEAへ、遠位部がMEA内側部へ投射する。前海馬台、傍海馬台への投射にも局所対応結合が見られる。また、錐体細胞層の深部からはCA1へ戻る投射(再入線維:re-entrant fiber)がある。
76行目: 76行目:
=== 海馬皮質の層構造===  
=== 海馬皮質の層構造===  


 大脳皮質のそれぞれの領野は一般にVI層構造をとるとされ、各層は特異的な出力投射様式を示す(文献13)。II層は同側性に近位への皮質投射、III層は遠位への皮質投射で交連性投射を含む、IV層は視床特異核からの入力を受け顆粒上層(II、 III層)へ軸索を送る、V層は視床下部、脳幹、脊髄への下行性投射の起始部、VI層は主に視床への投射部位である。これに対して、海馬体に属する歯状回、アンモン角、海馬台は、それぞれが独立した皮質領域と考えられ、単純な層構造を示す皮質と考えられてきた。しかしながら、海馬体の各領域と大脳皮質各層の主に出力様式から見た神経結合を比較して見ると、歯状回は大脳皮質のII層、アンモン角(CA1~CA4)はIII層、海馬台はV-VI層に相当すると考える事ができる。したがって、海馬体全体で大脳皮質の一領野を構成しているといえる(図7)。IV層は体性感覚野、聴覚野、視覚野などの感覚皮質で特に発達しており、視床特異核からの入力を受ける顆粒細胞からなる層であり、もともと側頭葉ではほとんど発達しておらず、海馬体でもこれを欠く。
 大脳皮質のそれぞれの領野は一般にVI層構造をとるとされ、各層は特異的な出力投射様式を示す(文献<ref name=ref13> '''Ishizuka N'''<br>Structural organization of the efferent channels of the subiculum.<br>In: Limbic and Association Cortical Systems – Basic, Clinical and Computational Aspects.<br>Eds by Ono T, Matsumoto G, Linas RR, Berthoz A, Norgrren R, Nishijo H and Tamura R.<br>Elsevier, Amsterdam p.121-129 (2003). International Congress Series 1250.</ref>)。II層は同側性に近位への皮質投射、III層は遠位への皮質投射で交連性投射を含む、IV層は視床特異核からの入力を受け顆粒上層(II、 III層)へ軸索を送る、V層は視床下部、脳幹、脊髄への下行性投射の起始部、VI層は主に視床への投射部位である。これに対して、海馬体に属する歯状回、アンモン角、海馬台は、それぞれが独立した皮質領域と考えられ、単純な層構造を示す皮質と考えられてきた。しかしながら、海馬体の各領域と大脳皮質各層の主に出力様式から見た神経結合を比較して見ると、歯状回は大脳皮質のII層、アンモン角(CA1~CA4)はIII層、海馬台はV-VI層に相当すると考える事ができる。したがって、海馬体全体で大脳皮質の一領野を構成しているといえる(図7)。IV層は体性感覚野、聴覚野、視覚野などの感覚皮質で特に発達しており、視床特異核からの入力を受ける顆粒細胞からなる層であり、もともと側頭葉ではほとんど発達しておらず、海馬体でもこれを欠く。


== 参考文献 ==
== 参考文献 ==
95行目: 95行目:
14) 池谷裕二:“海馬”を極める http://gaya.jp/research/index.htm
14) 池谷裕二:“海馬”を極める http://gaya.jp/research/index.htm


 
<references />
 
図の説明
図1.記憶回路の神経結合を示す概念図。青は大脳皮質領域、ピンクは皮質下領域の出力先、橙色は皮質下領域からの入力路
図2.内側嗅内野からの貫通線維束の終止部位(焦茶色)
図3.海馬体各領域の連続する結合と出力先を示す図。文献8より改変
図4.CA1, CA3錐体細胞の樹状突起分布。文献11より改変
図5.CA3領域への各種入力の分布勾配を示す図。
図6.CA3からCA1へのシャッファー側枝の分布を示す図。文献7より改変
図7.出力から見た海馬体の層構造と内部結合 文献8より改変




(執筆者:石塚典生 担当編集委員:藤田一郎)
(執筆者:石塚典生 担当編集委員:藤田一郎)