「超解像蛍光顕微鏡」の版間の差分

編集の要約なし
71行目: 71行目:


光学顕微鏡の空間分解能は先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。超解像顕微鏡法の分類の一つであるLocalization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
光学顕微鏡の空間分解能は先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。超解像顕微鏡法の分類の一つであるLocalization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
# 発現しているGFPの数が多いため、隣り合ったGFPのPSFが重なりあってしまいFIONAを適用できない。
# 発現しているGFPの数が多いため、隣り合ったGFPの輝点が重なりあってしまいFIONAを適用できない。
# 上記の状況を回避するためにPSFの重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
# 上記の状況を回避するために輝点の重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
# 上記が仮に達成できたとしても数個のGFPの詳細位置がわかるだけであり、分子の局在情報としては不十分である。
# 上記が仮に達成できたとしても数個のGFPの詳細位置がわかるだけであり、分子の局在情報としては不十分である。
<br>
<br>
79行目: 79行目:


====<small>PALM,FPALM</small>====
====<small>PALM,FPALM</small>====
蛍光一分子局在化顕微鏡法の一つとしてまず初めにPALM(Photoactivated localization microscopy)<ref><pubmed> 16902090 </pubmed></ref>の原理について説明する。PALMは蛍光色素として特定波長の刺激光照射により蛍光状態がオフからオンへ変化するPA-GFP<ref><pubmed> 12228718 </pubmed></ref>のような「光スイッチング蛍光タンパク質(Photo-switchable fluorescent protein; PSFP)」を利用する。オフからオンへ切り替わる確率は刺激光の強度と照射時間とおよそ比例関係にあるので、それらを適切にコントロールすることで視野内でPSFが重ならない程度に疎らにPSFPをオンにする事ができる(図-①)。この状態であればFIONAを適用し蛍光一分子の位置解析が可能である(図-②,③)。視野内のPSFPを退色させた後に、①-③をPSFPが全てなくなるまで何度も繰り返す。こうして発現させた全てのPSFPの局在画像(PALM画像)を得る事ができる。図では比較のために②で得られた画像の総和も示した。これはPSFPを全てオンにして撮った通常の蛍光画像に相当する。通常の蛍光画像では観られなかった「P A L M」の4文字がPALM画像では確認できる。<br>
蛍光一分子局在化顕微鏡法の一つとしてまず初めにPALM(Photoactivated localization microscopy)<ref><pubmed> 16902090 </pubmed></ref>の原理について説明する。PALMは蛍光色素として特定波長の刺激光照射により蛍光状態がオフからオンへ変化するPA-GFP<ref><pubmed> 12228718 </pubmed></ref>のような「光スイッチング蛍光タンパク質(Photo-switchable fluorescent protein; PSFP)」を利用する。オフからオンへ切り替わる確率は刺激光の強度と照射時間とおよそ比例関係にあるので、それらを適切にコントロールすることで視野内で輝点が重ならない程度に疎らにPSFPをオンにする事ができる(図-①)。この状態であればFIONAを適用し蛍光一分子の位置解析が可能である(図-②,③)。視野内のPSFPを退色させた後に、①-③をPSFPが全てなくなるまで何度も繰り返す。こうして発現させた全てのPSFPの局在画像(PALM画像)を得る事ができる。図では比較のために②で得られた画像の総和も示した。これはPSFPを全てオンにして撮った通常の蛍光画像に相当する。通常の蛍光画像では観られなかった「P A L M」の4文字がPALM画像では確認できる。<br>
PALMと同時期に発表されたFPALM(Fluorescence photoactivation localization microscopy)もPALMと同じくPSFPを利用する方法である<ref><pubmed> 16980368 </pubmed></ref>。PALM・FPALMではPA-GFPの他のPSFPとして刺激光により蛍光色が変化するmEOS2(緑色から赤色)<ref><pubmed> 19169260 </pubmed></ref>が利用される。またケージド蛍光色素の利用も可能である。<br>
PALMと同時期に発表されたFPALM(Fluorescence photoactivation localization microscopy)もPALMと同じくPSFPを利用する方法である<ref><pubmed> 16980368 </pubmed></ref>。PALM・FPALMではPA-GFPの他のPSFPとして刺激光により蛍光色が変化するmEOS2(緑色から赤色)<ref><pubmed> 19169260 </pubmed></ref>が利用される。またケージド蛍光色素の利用も可能である。<br>


41

回編集