「銅・亜鉛-スーパーオキシドディスムターゼ」の版間の差分

編集の要約なし
編集の要約なし
39行目: 39行目:
|| [[溶血性貧血]]、[[脂肪肝]]、[[肝癌]]、骨密度・筋肉量低下 ||新生児期に死亡|| 見かけは正常 高酸素状態に弱い
|| [[溶血性貧血]]、[[脂肪肝]]、[[肝癌]]、骨密度・筋肉量低下 ||新生児期に死亡|| 見かけは正常 高酸素状態に弱い
|}
|}
== 構造 ==
 SOD1の分子量は生物種によって多少異なるが、サブユニットあたり約16,000 (アミノ酸残基:151から155個)で、ヒトSOD1は153個のアミノ酸残基を有している。
 N末端の[[メチオニン]]残基は脱落し、アセチル化された[[アラニン]]残基から始まっている。そのためSOD1のアミノ酸残基の番号は、ヒトSOD1のアミノ酸配列を基本とし、アラニンを1番目として表記されている(メチオニンを1番目とする表記法もある)。例えば家族性ALSの変異を表すG37Rは、アラニンから数えて37番目のグリシンがアルギニンに変異したことを表している。
 SOD1は分子量も小さく安定であることから非常に多くの立体構造が決定されており、[https://pdbj.org/ Protein Databank]に登録されている('''図2A''')。SOD1サブユニットは8本のβストランドが逆平行βシートを形成しており、[[グリークキー構造]]を2つ有したβバレル構造である('''図2B''')。グリークキー構造は隣接する4本の逆平行βストランドとそれらを連結するループで構成され、このうちの3本はヘアピン構造で結合している。1番目のβストランドに隣接する4番目のβストランドは、グリークキーループによって3番目のストランドと結合している。SOD1では、ループIIIとループVIがグリークキーループと呼ばれる。グリークキー構造はギリシャ美術で見られる[[wj:ギリシア雷文|雷門模様]]に似ていることから命名された。
 SOD1のサブユニット同士のダイマー化は[[疎水性アミノ酸]]残基間の相互作用と主鎖同士の水素結合から成り立っている。またサブユニットあたり酵素活性に必須であるCuイオンと酵素の構造安定性に寄与するZnイオンを1つずつ配位している。金属の配位とサブユニット内に1ヶ所ある[[ジスルフィド結合]](Cys57-Cys146)はSOD1タンパク質の安定性に大きく寄与している。
=== システイン残基 ===
 '''図3'''は進化の過程におけるSOD1の[[システイン]]残基の位置を示したものである。SOD1構造の維持に重要なCys57とCys146の分子内S-S結合は存在しており、種を超えて完全に保存されている。一方、進化の過程でフリー(S-S結合していない)のシステイン残基は増えてきた。ヒトSOD1のCys6に相当する6番目のアミノ酸は酵母や植物ではアラニンで、ヒトのCys111に相当するアミノ酸はセリンになっている。[[魚類]]や[[ニホンザル]]を含む哺乳類のSOD1では6番目のアミノ酸がフリーのシステインに変異し、ヒト・[[類人猿]]および[[ニワトリ]]のSOD1は111番目もフリーのシステインを持つようになった。
 なお、[[ショウジョウバエ]]やニワトリのSOD1はフリーのシステイン残基を余分に持つ。大きな脳をもつ高等動物や酸素を大量に消費する飛行を行う昆虫と鳥類は多くの酸化ストレスに曝されることから、フリーのシステイン残基のチオール基(SH)による抗酸化作用が必要になってきたと考えられる。しかし、フリーのシステイン残基は反応性が高く酸化されやすいため、SOD1タンパク質自体にとっては有利なことではない。特にグリークキーループVIに存在するCys111は非常に酸化されやすく、[[スルフォン酸]]への不可逆的酸化<ref name=Fujiwara2007><pubmed>17913710</pubmed></ref>[10]や分子間ジスルフィド結合<ref name=Furukawa2006><pubmed>16636274</pubmed></ref>[11]が起こり、ミスフォールディングや凝集に進む。このCys111を[[2-メルカプトエタノール]](2-ME)('''図2A''')<ref name=Ihara2012><pubmed>22804629</pubmed></ref>[12]やシステイン<ref name=Auclair2013><pubmed>23927036</pubmed></ref>[13]などでブロックすると酸化による分解や凝集を防ぐことができる。


== 機能 ==
== 機能 ==
58行目: 72行目:
=== 分泌SOD1のパラクライン作用 ===
=== 分泌SOD1のパラクライン作用 ===
 細胞質に存在するSOD1が[[小胞体]](ER)-[[ゴルジ体]]経路で細胞外に輸送され<ref name=Urushitani2008><pubmed>18337461</pubmed></ref>[83]、特に変異SOD1は[[クロモグラニンB]]と結合して分泌され細胞毒性に関与していることが報告された<ref name=Urushitani2006><pubmed>16369483</pubmed></ref>[84]。さらに、細胞外のカリウムイオンによって誘導された[[脱分極]]によってSOD1が細胞外に分泌されること<ref name=Cruz-Garcia2017><pubmed>28794127</pubmed></ref>[85]や神経細胞においてSOD1が[[ムスカリン性アセチルコリン受容体]]を介して[[ERK1]]/[[ERK2|2]]と[[AKT]]を活性化すること<ref name=Damiano2013><pubmed>23147108</pubmed></ref>[86]が報告されている。
 細胞質に存在するSOD1が[[小胞体]](ER)-[[ゴルジ体]]経路で細胞外に輸送され<ref name=Urushitani2008><pubmed>18337461</pubmed></ref>[83]、特に変異SOD1は[[クロモグラニンB]]と結合して分泌され細胞毒性に関与していることが報告された<ref name=Urushitani2006><pubmed>16369483</pubmed></ref>[84]。さらに、細胞外のカリウムイオンによって誘導された[[脱分極]]によってSOD1が細胞外に分泌されること<ref name=Cruz-Garcia2017><pubmed>28794127</pubmed></ref>[85]や神経細胞においてSOD1が[[ムスカリン性アセチルコリン受容体]]を介して[[ERK1]]/[[ERK2|2]]と[[AKT]]を活性化すること<ref name=Damiano2013><pubmed>23147108</pubmed></ref>[86]が報告されている。
== 構造 ==
 SOD1の分子量は生物種によって多少異なるが、サブユニットあたり約16,000 (アミノ酸残基:151から155個)で、ヒトSOD1は153個のアミノ酸残基を有している。
 N末端の[[メチオニン]]残基は脱落し、アセチル化された[[アラニン]]残基から始まっている。そのためSOD1のアミノ酸残基の番号は、ヒトSOD1のアミノ酸配列を基本とし、アラニンを1番目として表記されている(メチオニンを1番目とする表記法もある)。例えば家族性ALSの変異を表すG37Rは、アラニンから数えて37番目のグリシンがアルギニンに変異したことを表している。
 SOD1は分子量も小さく安定であることから非常に多くの立体構造が決定されており、Protein Data Bank (日本の[https://pdbj.org/ PDBサイト]) に登録されている('''図2A''')。SOD1サブユニットは8本のβストランドが逆平行βシートを形成しており、[[グリークキー構造]]を2つ有したβバレル構造である('''図2B''')。グリークキー構造は隣接する4本の逆平行βストランドとそれらを連結するループで構成され、このうちの3本はヘアピン構造で結合している。1番目のβストランドに隣接する4番目のβストランドは、グリークキーループによって3番目のストランドと結合している。SOD1では、ループIIIとループVIがグリークキーループと呼ばれる。グリークキー構造はギリシャ美術で見られる[[wj:ギリシア雷文|雷門模様]]に似ていることから命名された。
 SOD1のサブユニット同士のダイマー化は[[疎水性アミノ酸]]残基間の相互作用と主鎖同士の水素結合から成り立っている。またサブユニットあたり酵素活性に必須であるCuイオンと酵素の構造安定性に寄与するZnイオンを1つずつ配位している。金属の配位とサブユニット内に1ヶ所ある[[ジスルフィド結合]](Cys57-Cys146)はSOD1タンパク質の安定性に大きく寄与している。
=== システイン残基 ===
 '''図3'''は進化の過程におけるSOD1の[[システイン]]残基の位置を示したものである。SOD1構造の維持に重要なCys57とCys146の分子内S-S結合は存在しており、種を超えて完全に保存されている。一方、進化の過程でフリー(S-S結合していない)のシステイン残基は増えてきた。ヒトSOD1のCys6に相当する6番目のアミノ酸は酵母や植物ではアラニンで、ヒトのCys111に相当するアミノ酸はセリンになっている。[[魚類]]や[[ニホンザル]]を含む哺乳類のSOD1では6番目のアミノ酸がフリーのシステインに変異し、ヒト・[[類人猿]]および[[ニワトリ]]のSOD1は111番目もフリーのシステインを持つようになった。
 なお、[[ショウジョウバエ]]やニワトリのSOD1はフリーのシステイン残基を余分に持つ。大きな脳をもつ高等動物や酸素を大量に消費する飛行を行う昆虫と鳥類は多くの酸化ストレスに曝されることから、フリーのシステイン残基のチオール基(SH)による抗酸化作用が必要になってきたと考えられる。しかし、フリーのシステイン残基は反応性が高く酸化されやすいため、SOD1タンパク質自体にとっては有利なことではない。特にグリークキーループVIに存在するCys111は非常に酸化されやすく、[[スルフォン酸]]への不可逆的酸化<ref name=Fujiwara2007><pubmed>17913710</pubmed></ref>[10]や分子間ジスルフィド結合<ref name=Furukawa2006><pubmed>16636274</pubmed></ref>[11]が起こり、ミスフォールディングや凝集に進む。このCys111を[[2-メルカプトエタノール]](2-ME)('''図2A''')<ref name=Ihara2012><pubmed>22804629</pubmed></ref>[12]やシステイン<ref name=Auclair2013><pubmed>23927036</pubmed></ref>[13]などでブロックすると酸化による分解や凝集を防ぐことができる。


== 疾患との関わり ==
== 疾患との関わり ==