「骨形成因子」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
8行目: 8行目:


==神経発生における機能と活性==
==神経発生における機能と活性==
 神経系の初期発生では主としてパターンの形成に関与している。例えば、非神経[[外胚葉]]で発現し、それに隣接する領域の[[神経堤]]細胞の誘導に関与している<ref><pubmed> 7553857</pubmed></ref>。また、体幹部[[神経堤]]の移動開始を促進する。また、背側[[神経管]]で発現し、[[神経上皮細胞]]に背側特異的な遺伝子発現を誘導する。これにより、神経管背側ではそれに対応したサブタイプのニューロンが分化してくることになる<ref><pubmed> 9335341</pubmed></ref>。このように、神経前駆細胞に対してどのようなニューロンに分化するかを決定する作用もあるが、ショウジョウバエにおいて[[wikipedia:FMRFamide|FMRFamide]]を神経ペプチドとして分泌するニューロンの分化の場合のように、軸索の投射先から供給されたBMPが逆行性にニューロンの細胞体まで伝達されてその遺伝子発現/分化形質を制御するような例もある<ref><pubmed>12679036</pubmed></ref>。これらの例以外にも、様々な場面で神経分化の制御に関わっている。また、BMP シグナルは特定の細胞種の分化を促進するのみでなく、抑制もおこなう。神経管背側から分泌されるBMPによるシグナルは、Olig2を発現する[[オリゴデンドロサイト前駆細胞]]が分化するのを抑制する<ref><pubmed>18682850</pubmed></ref>。したがって、オリゴデンドロサイト前駆細胞が形成される際にはBMPによる抑制はFGFシグナル([[繊維芽細胞成長因子]]の項を参照)によってさらに抑制されていなければならない。成体マウスの[[海馬]]においては、[[神経幹細胞]]がゆっくりと増殖しながら分化したニューロン(顆粒細胞)を産生しているが、BMPシグナルのレベルを下げてしまうと[[神経幹細胞]]が一時的に増殖を早める一方でゆっくり増殖する幹細胞のプールが枯渇してしまい、結果的に産生するニューロンの数が減る<ref><pubmed> 20621052</pubmed></ref>。したがって、この場合ではBMPは[[神経幹細胞]]の維持をおこなっていると考えられる。また、BMP受容体IbのノックアウトマウスとEmx1-creをもちいたBMP受容体Iaのコンディショナルノックアウトマウスを掛け合わせることで、cortical hem特異的にBMPシグナルを失わせたマウスが作られている<ref><pubmed> 20445055 </pubmed></ref>。このダブルノックアウト(DKO)マウスでは、[[歯状回]]が特異的に小さくなっており、顆粒細胞の数も減少している。このことは、よく知られているようなcortical hemの海馬の発生のオーガナイザーとして機能の少なくとも一部は、BMPシグナルによっておこなわれていることを示している。このDKOマウスは恐怖や不安を誘発する刺激に対する反応性が鈍くなる表現型を示すが、これはこれまでに示唆されている[[歯状回]]の機能とよく一致している。
 神経系の初期発生では主としてパターンの形成に関与している。例えば、非神経[[外胚葉]]で発現し、それに隣接する領域の[[神経堤]]細胞の誘導に関与している<ref><pubmed> 7553857</pubmed></ref>。また、体幹部[[神経堤]]の移動開始を促進する。また、背側[[神経管]]で発現し、[[神経上皮細胞]]に背側特異的な遺伝子発現を誘導する。これにより、神経管背側ではそれに対応したサブタイプのニューロンが分化してくることになる<ref><pubmed> 9335341</pubmed></ref>。このように、神経前駆細胞に対してどのようなニューロンに分化するかを決定する作用もあるが、[[ショウジョウバエ]]において[[wikipedia:FMRFamide|FMRFamide]]を[[神経ペプチド]]として分泌するニューロンの分化の場合のように、軸索の投射先から供給されたBMPが逆行性にニューロンの細胞体まで伝達されてその遺伝子発現/分化形質を制御するような例もある([[逆行性伝達物質]]の項を参照)<ref><pubmed>12679036</pubmed></ref>。これらの例以外にも、様々な場面で神経分化の制御に関わっている。また、BMP シグナルは特定の細胞種の分化を促進するのみでなく、抑制もおこなう。神経管背側から分泌されるBMPによるシグナルは、Olig2を発現する[[オリゴデンドロサイト前駆細胞]]が分化するのを抑制する<ref><pubmed>18682850</pubmed></ref>。したがって、オリゴデンドロサイト前駆細胞が形成される際にはBMPによる抑制はFGFシグナル([[繊維芽細胞成長因子]]の項を参照)によってさらに抑制されていなければならない。成体マウスの[[海馬]]においては、[[神経幹細胞]]がゆっくりと増殖しながら分化したニューロン(顆粒細胞)を産生しているが、BMPシグナルのレベルを下げてしまうと[[神経幹細胞]]が一時的に増殖を早める一方でゆっくり増殖する幹細胞のプールが枯渇してしまい、結果的に産生するニューロンの数が減る<ref><pubmed> 20621052</pubmed></ref>。したがって、この場合ではBMPは[[神経幹細胞]]の維持をおこなっていると考えられる。また、BMP受容体IbのノックアウトマウスとEmx1-creをもちいたBMP受容体Iaのコンディショナルノックアウトマウスを掛け合わせることで、cortical hem特異的にBMPシグナルを失わせたマウスが作られている<ref><pubmed> 20445055 </pubmed></ref>。このダブルノックアウト(DKO)マウスでは、[[歯状回]]が特異的に小さくなっており、顆粒細胞の数も減少している。このことは、よく知られているcortical hemの海馬の発生のオーガナイザーとして機能の少なくとも一部は、BMPシグナルによっておこなわれていることを示している。このDKOマウスは恐怖や不安を誘発する刺激に対する反応性が鈍くなる表現型を示すが、これはこれまでに示唆されている[[歯状回]]の機能とよく一致している。


==神経筋接合、神経変性疾患とBMPシグナル<ref><pubmed> 20832291</pubmed></ref>==
==神経筋接合、神経変性疾患とBMPシグナル<ref><pubmed> 20832291</pubmed></ref>==
 主にショウジョウバエの研究から、[[運動神経]]と筋肉の接合部([[wikipedia:neuromauscular_junction|neuromauscular junction]]、[[神経筋接合部]]の項を参照)における[[シナプス]]形成に逆行性(retrograde)のBMPシグナルが重要な役割を果たしていることが示されている。すなわち、神経筋接合部の筋肉側から分泌されるBMP(Glass bottom boat(Gbb))がプレシナプスにあるWishful thinking(Wit)、Thickveins(Tkv)、Saxophone(Sax)からなる受容体複合体に結合する。これにより、LIMK1を活性化させてシナプスを安定化するとともに、受容体によってMad(Mothers against decepentaplegic、ショウジョウバエのSMADホモログ)がリン酸化されて核内に移行してTrioなどのターゲット遺伝子の転写を活性化する<ref><pubmed> 20510858 </pubmed></ref>。これらのBMPシグナル構成因子の変異体では神経筋接合部の縮小や神経伝達の低下が見られ、逆にBMPシグナルの抑制因子(例えばDaughters against decapetaplegic (Dad))の変異は神経筋接合部の過形成/肥大が認められる。[[神経変性疾患]]の中には原因遺伝子のいくつかが同定されているものがあるが、その中にはBMPシグナルとの関連が認められる場合がある。例えば、Hereditary Spastic Paraplegiaにみられる変異遺伝子の一つであるNIPA1のショウジョウバエホモログであるspichthyinの変異体では、リン酸化Madが正常の4倍ほどに増え、神経筋接合部のシナプスボタン(synaptic bouton)の数も2倍に増えてしまう。哺乳類細胞の培養実験からもNIPA1がBMPシグナルを抑制することが示されている。[[筋萎縮性側索硬化症(ALS)]](Amyotrophic Lateral Sclerosis)の場合、90%は自然発症だが、家族性のものにはVapB遺伝子に変異があるケースがある。ショウジョウバエのVapB変異体では神経筋接合部のシナプスボタンの数が減少し、過剰発現した場合にはシナプスボタンの数の増加と神経筋接合部の肥大がおこる。このような表現型はそれぞれリン酸化Madの減少、増加を伴っており、やはりBMPシグナルとの関連が示唆される。また、自然発症型ALS患者の運動ニューロンにおいて、リン酸化SMADの減少が報告されている。I型のSpinal Muscular Atrophyの患者ではしばしばSurvival Motor Neuron1(Smn1)遺伝子の欠損やコピー数の異常がみられる。Smn1遺伝子の異常とSpinal Muscular Atrophyとの関連はまだはっきりしないが、ショウジョウバエのSmn1変異体では神経筋接合部のシナプスボタンの数が減少し、リン酸化Madの量も減少する。また、この表現型はBMPシグナルの低下によって増強される。[[多発性硬化症]](Multiple Sclerosis)については、Clec16A遺伝子の多型との関連が示唆されている。ショウジョウバエのClec16Aホモログであるendosomal maturation defective(ema)変異体ではシナプスボタンの肥大が見られ、Tkvの発現量が2倍、リン酸化Madも4倍に増加する。多発性硬化症患者の異常部位ではBMP4やBMP5、多発性硬化症モデルマウスではBMP4、6、7の発現上昇が報告されている。これらのことから、さまざまな神経変性疾患とBMPシグナルの異常の関連が示唆されており、治療への応用が期待される。
 主にショウジョウバエの研究から、[[運動神経]]と筋肉の接合部([[wikipedia:neuromauscular_junction|neuromauscular junction]]、[[神経筋接合部]]の項を参照)における[[シナプス]]形成に逆行性(retrograde)のBMPシグナルが重要な役割を果たしていることが示されている。すなわち、神経筋接合部の筋肉側から分泌されるBMP(Glass bottom boat(Gbb))がプレシナプスに分布するWishful thinking(Wit)、Thickveins(Tkv)、Saxophone(Sax)からなる受容体複合体に結合する。これにより、LIMK1を活性化させてシナプスを安定化するとともに、受容体によってMad(Mothers against decepentaplegic、ショウジョウバエのSMADホモログ)がリン酸化されて核内に移行してTrioなどのターゲット遺伝子の転写を活性化する<ref><pubmed> 20510858 </pubmed></ref>。これらのBMPシグナル構成因子の変異体では神経筋接合部の縮小や神経伝達の低下が見られ、逆にBMPシグナルの抑制因子(例えばDaughters against decapetaplegic (Dad))の変異は神経筋接合部の過形成/肥大が認められる。[[神経変性疾患]]の中には原因遺伝子のいくつかが同定されているものがあるが、その中にはBMPシグナルとの関連が認められる場合がある。例えば、[[wikipedia:Hereditary_Spastic_Paraplegia|Hereditary Spastic Paraplegia]]にみられる変異遺伝子の一つである[[wikipedia:NIPA1|NIPA1]]のショウジョウバエホモログであるspichthyinの変異体では、リン酸化Madが正常の4倍ほどに増え、神経筋接合部のシナプスボタン(synaptic bouton)の数も2倍に増えてしまう。哺乳類細胞の培養実験からもNIPA1がBMPシグナルを抑制することが示されている。[[筋萎縮性側索硬化症(ALS)]]([[wikipedia:Amyotrophic_Lateral_Sclerosis|Amyotrophic Lateral Sclerosis]])の場合、90%は自然発症だが、家族性のものには[[wikipedia:VAPB|VapB]]遺伝子に変異があるケースがある。ショウジョウバエのVapB変異体では神経筋接合部のシナプスボタンの数が減少し、過剰発現した場合にはシナプスボタンの数の増加と神経筋接合部の肥大がおこる。このような表現型はそれぞれリン酸化Madの減少、増加を伴っており、やはりBMPシグナルとの関連が示唆される。また、自然発症型ALS患者の運動ニューロンにおいて、リン酸化SMADの減少が報告されている。I型の[[wikipedia:Spinal_Muscular_Atrophy|Spinal Muscular Atrophy]]の患者ではしばしば[[wikipedia:Survival_of_Motor_Neuron|Survival of Motor Neuron 1]](Smn1)遺伝子の欠損やコピー数の異常がみられる。Smn1遺伝子の異常とSpinal Muscular Atrophyとの関連はまだはっきりしないが、ショウジョウバエのSmn1変異体では神経筋接合部のシナプスボタンの数が減少し、リン酸化Madの量も減少する。また、この表現型はBMPシグナルの低下によって増強される。[[多発性硬化症]]([[wikipedia:Multiple_Sclerosis|Multiple Sclerosis]])については、[[wikipedia:Clec16A|Clec16A]]遺伝子の多型との関連が示唆されている。ショウジョウバエのClec16Aホモログであるendosomal maturation defective(ema)変異体ではシナプスボタンの肥大が見られ、Tkvの発現量が2倍、リン酸化Madも4倍に増加する。多発性硬化症患者の異常部位ではBMP4やBMP5、多発性硬化症モデルマウスではBMP4、6、7の発現上昇が報告されている。これらのことから、さまざまな神経変性疾患とBMPシグナルの異常の関連が示唆されており、治療への応用が期待される。


<references/>
<references/>