「Förster共鳴エネルギー移動」の版間の差分

編集の要約なし
編集の要約なし
62行目: 62行目:


==FRETの画像検出==
==FRETの画像検出==
 FRETによって蛍光寿命の減少、ドナーの蛍光強度の減少、アクセプターの蛍光の増加などが観察される。液体サンプルであれば蛍光分光光度計を用いる事で検出する事が可能であるが、画像として取得する場合には観察したい対象の特性を考慮しつつ、方法を選択していく。
 FRETが起こるとドナーの蛍光強度の減少、アクセプターの蛍光の増加、ドナー蛍光寿命の減少が観察される。液体サンプルであれば蛍光分光光度計を用いる事で検出する事が可能であるが、画像として取得する場合には観察したい対象の特性を考慮しつつ、方法を選択していく。


===蛍光強度比イメージング===
===蛍光強度比イメージング===
 ドナーおよびアクセプターの蛍光を取得後、ドナーとアクセプターの蛍光強度比を計算する。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法である。タイムラプス解析も行える。
 ドナーおよびアクセプターの蛍光を取得し、ピクセルごとの蛍光強度比を計算する。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法である。タイムラプス解析も行える。


 ドナー蛍光強度は、FRET効率Eと次のような関係に有る。
 ドナー蛍光強度は、FRET効率Eと次のような関係に有る。
73行目: 73行目:




 ただし、F'<sub>D</sub>、F<sub>D</sub>はそれぞれ、アクセプターがある場合と無い場合でのドナー蛍光強度である。つまり、FRET効率が良い程、F'<sub>D</sub>小さくなる、つまり画像が暗くなる。一方で、FRETによりアクセプター画像は明るくなるので、ドナー画像とアクセプター画像の比を計算する事で、FRETを検出する。
 ただし、F'<sub>D</sub>、F<sub>D</sub>はそれぞれ、アクセプターがある場合と無い場合でのドナー蛍光強度である。つまり、FRET効率が良い程、F'<sub>D</sub>小さくなる、つまり画像が暗くなる。一方で、FRETによりアクセプター画像は明るくなるので、ドナー画像とアクセプター画像の比を計算する事で、FRETを検出する事が出来る。


 データを取得、解釈する際に注意しなければいけないポイントがある。
 データを取得、解釈する際に注意しなければいけないポイントがある。
79行目: 79行目:
 まず、ドナーの蛍光のアクセプターチャネルへの漏れ込みであり、S/N比の減少の原因となる。漏れ込みを極力抑えるには、適切なバンドパスフィルターを用いる。光量を犠牲にしても、ドナー蛍光が漏れ込まない波長を選ぶ方がFRETは特異的に検出できる。
 まず、ドナーの蛍光のアクセプターチャネルへの漏れ込みであり、S/N比の減少の原因となる。漏れ込みを極力抑えるには、適切なバンドパスフィルターを用いる。光量を犠牲にしても、ドナー蛍光が漏れ込まない波長を選ぶ方がFRETは特異的に検出できる。


 また、蛍光画像にバックグラウンドノイズがある事があるが、それがFRET変化に影響を与える。バックグラウンドノイズ引き算することで、より正しいFRET効率が得られる。
 また、蛍光画像にバックグラウンドノイズがある事があるが、それがFRET変化に影響を与える。バックグラウンドノイズを引き算することで、よりFRETが計算できるが、蛍光シグナルが暗くなると、少しのバックグランドのぶれがシグナルを左右する。例えば細胞の周辺はが暗いのでバックグラウンドの引き算により偽陽性が出やすいので注意を要する。


 次に、2分子間FRETで起きることであるが(以下参照)、ドナーとアクセプターの局在の違いは疑似FRETを生じる。リンカーで連結し1分子にするか、局在しているアクセプターの蛍光強度を補正することで避けることが可能である。
 次に、2分子間FRETで起きることであるが(以下参照)、ドナーとアクセプターの局在の違いは偽陽性を生じる。リンカーで連結し1分子にするか、局在しているアクセプターの蛍光強度を補正することで避けることが可能である。


=== アクセプターブリーチング法 ===
=== アクセプターブリーチング法 ===
 適切な波長の光によって、アクセプターを退色させることでFRETを解消することができる。この解消度合いより生じていたFRETを算出する。つまり、F'<sub>D</sub>がアクセプターの退色によりF<sub>D</sub>と等しくなる事により、E=0となる。その為、退色前後の画像を比較する事によりEが検出可能である。しかしながら、この手法は不可逆的であるために経時的変化を追うことは困難である。
 適切な波長の光によって、アクセプターを退色させることでFRETを解消することができる。この解消度合いより生じていたFRETを算出する。つまり、F'<sub>D</sub>がアクセプターの退色によりF<sub>D</sub>と等しくなる事により、E=0となる。その為、退色前後の画像を比較する事によりEが検出可能である。しかしながら、この手法は不可逆的であるために経時的変化を追うことは困難である。


=== ドナーの蛍光寿命を測定する方法  ===
=== 蛍光寿命イメージング===
 蛍光体が励起されると、図2に示すような減衰曲線に従って蛍光を発する。蛍光寿命は、蛍光の減衰曲線の速度定数<math>k \ </math>と逆数の関係にある。 N<sub>0</sub>は励起光によって励起された電子の数、kは励起状態にある電子が基底状態に戻る速度定数であり、蛍光として基底状態に戻る際の速度定数、熱を発して基底状態に戻るなどの無放射遷移の速度定数の和として表される。
 蛍光体が励起されると、図2に示すような減衰曲線に従って蛍光を発する。蛍光寿命は、蛍光の減衰曲線の速度定数''k''と逆数である。 ''N<sub>0</sub>''は励起光によって励起された電子の数、''k''は励起状態にある電子が基底状態に戻る速度定数であり、蛍光として基底状態に戻る際の速度定数、熱を発して基底状態に戻るなどの無放射遷移の速度定数の和として表される。


 FRETを起こしている時のの速度定数k<sub>f</sub>は、以下の式で規定される。  
 FRETを起こしている時の速度定数''k<sub>f</sub>''は、以下の式で規定される。  




95行目: 95行目:




 ここで、k<sub>D</sub>はドナーの蛍光の速度定数、Q<sub>D</sub>はドナーの蛍光の量子収率、&kappa;はドナーとアクセプターの双極子モーメントの配向、rはドナーとアクセプターの距離、N<sub>A</sub>はアボガドロ数、nは溶媒の屈折率である。
 ここで、''k<sub>D</sub>''はドナーの蛍光の速度定数、''Q<sub>D</sub>''はドナーの蛍光の量子収率、''&kappa;''はドナーとアクセプターの双極子モーメントの配向、''r''はドナーとアクセプターの距離、''N<sub>A</sub>''はアボガドロ数、''n''は溶媒の屈折率である。




101行目: 101行目:




 ここで&tau;'<sub>D</sub>と&tau;<sub>D</sub>はそれぞれ、アクセプターが存在する場合と存在しない場合でのドナー蛍光寿命である。つまり、FRETが起きると、蛍光寿命が減少する(図4)。
 ここで''&tau;'<sub>D</sub>''''&tau;<sub>D</sub>''はそれぞれ、アクセプターが存在する場合と存在しない場合でのドナー蛍光寿命である。つまり、FRETが起きると、蛍光寿命が短縮する(図4)。


 蛍光寿命は、[[GFP]]は2.5nsec、YFPでは2.9nsec、mCherryでは1.5nsec程度の値を取る。蛍光寿命プローブとしてはドナーとしてmGFP、アクセプターとしてmRFPもしくはmCherryが用いられる。アクセプターの蛍光は必要ないため、蛍光寿命測定法は、蛍光強度比測定法に比べて、蛍光の漏れ込み、アクセプターとの局在の違いなどによって生じる疑似陽性を回避できる。
 蛍光寿命測定法は、アクセプターの蛍光は必要ないため、蛍光強度比測定法に比べて、蛍光の漏れ込み、アクセプターとの局在の違いなどによって生じる疑陽性を回避できる。


 蛍光寿命の変化を測定する方法は2つある。
 蛍光寿命の変化を測定する方法は2つある。


====時間ドメイン====
====時間ドメイン====
 励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)を計測することで時定数&tau;を計算する。時間を横軸としてヒストグラムを作製することができる。通常蛍光寿命は指数関数に従い減衰していく。FRETを起こしている分子と起こしていない分子が共存する時には二重指数関数になるため、二重指数関数にfittingすることによって、FRETの起きている分子の割合が算出できる。また、得られる光子の数が少ない時には二重指数関数fittingは不正確になりやすい為、単に平均蛍光寿命を計算するだけで済ませる場合も有る。単一指数関数の場合は、平均蛍光寿命は&tau;に等しくなる。
 励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)を計測することで時定数&tau;を計算する。時間を横軸としてヒストグラムを作製することができる。通常蛍光寿命は指数関数に従い減衰していく。FRETを起こしている分子と起こしていない分子が共存する時には二重指数関数になるため、二重指数関数にfittingすることによって、FRETの起きている分子の割合が算出できる。得られる光子の数が少ない時には二重指数関数fittingは不正確になりやすい為、単に平均蛍光寿命を計算するだけで済ませる場合も有る。単一指数関数の場合は、平均蛍光寿命は&tau;に等しくなる。


 取得した蛍光を理論上全てデータに反映させることができるが、実際には、光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得するには、改善の余地がある。また、秒単位の経時変化を追うためには、低解像度で画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。さらに、短時間で画像を取得するためには、明るいサンプルであったほうがよい。
 取得した蛍光を理論上全てデータに反映させることができるが、実際には、光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得するには、改善の余地がある。また、秒単位の経時変化を追うためには、低解像度で画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。さらに、短時間で画像を取得するためには、明るいサンプルであったほうがよい。


 光源にはパルスレーザーを用いる。神経系の研究によく用いられるに光子顕微鏡に後付けする事も可能である。
 光源にはパルスレーザーを用いる。神経系の研究によく用いられる二光子顕微鏡に後付けする事も可能である。


[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4:海馬スライスCA1錐体細胞に発現させたGFPのFLIMイメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)をBecker&Hickl社software、SPC imageにて取得した。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]
[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4:海馬スライスCA1錐体細胞に発現させたGFPのFLIMイメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)をBecker&Hickl社software、SPC imageにて取得した。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]
331行目: 331行目:


The numbers in the Probe Design column correspond to the section number in the “Strategies of probe design” chapter of the main text. See the webpage by Dr. Michiyuki Matsuda http://www.lif.kyoto-u.ac.jp/labs/fret/e-phogemon/unifret.htm for updated information.
The numbers in the Probe Design column correspond to the section number in the “Strategies of probe design” chapter of the main text. See the webpage by Dr. Michiyuki Matsuda http://www.lif.kyoto-u.ac.jp/labs/fret/e-phogemon/unifret.htm for updated information.
==蛍光色素の選択==
現在、多数の遺伝子工学的に作製されたタンパク質FRETプローブにおいて、GFPの色彩変異体、シアン色蛍光タンパク質CFPと黄色蛍光タンパク質YFPのFRETペアが広範に用いられている。近年、CloverとmRuby2が開発され、より良いFRETペアであると報告されている<ref><pubmed>22961245</pubmed></ref>。FRETのアクセプターとなるが蛍光を発しないREACh, darkVenus, superREAChなども用いられる。同じ理由により、
蛍光寿命は、[[GFP]]は2.5nsec、YFPでは2.9nsec、mCherryでは1.5nsec程度の値を取る。蛍光寿命プローブとしてはドナーとしてmGFP、アクセプターとしてmRFPもしくはmCherryが用いられる。


== 神経科学分野への応用  ==
== 神経科学分野への応用  ==