「Fused in sarcoma」の版間の差分

編集の要約なし
 
(同じ利用者による、間の8版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[https://researchmap.jp/shinsuke.ishigaki 石垣診祐]</font><br>
''名古屋大学大学院医学系研究科総合医学専攻 脳神経病態制御学 神経内科学分野''<br>
DOI:<selfdoi /> 原稿受付日:2020年12月17日 原稿完成日:2021年1月18日<br>
担当編集委員:[http://researchmap.jp/kojiyamanaka 山中 宏二](名古屋大学 環境医学研究所 病態神経科学)
<br>
</div>
英略称:FUS
英略称:FUS
{{box|text= Fused in sarcoma (FUS)はTLS(translated in liposarcoma)とも称されるRNA結合タンパク質で、主として核内に局在し転写、選択的スプライシング、RNA輸送などRNA代謝全般に機能する分子である。Chopなどとの融合タンパク質が癌の原因遺伝子となることで発見され命名されたが、近年は筋萎縮性側索硬化症(ALS)の原因遺伝子および病態関連分子として注目されている。}}
{{box|text= Fused in sarcoma (FUS)はTLS(translocated in liposarcoma)とも称されるRNA結合タンパク質で、主として核内に局在し転写、選択的スプライシング、RNA輸送などRNA代謝全般に機能する分子である。Chopなどとの融合タンパク質が癌の原因遺伝子となることで発見され命名されたが、近年は筋萎縮性側索硬化症(ALS)の原因遺伝子および病態関連分子として注目されている。}}


== Fused in sarcomaとは ==
== Fused in sarcomaとは ==
7行目: 15行目:
 これとは別に、FUSは[[pre-mRNA]]の成熟に関わる複合体のサブユニット[[hnRNP P2]]としても同定された<ref name=Calvio1995><pubmed>7585257</pubmed></ref>。そして2009年に2つのグループから[[家族性ALS]]の原因遺伝子であることが報告され<ref name=Kwiatkowski2009><pubmed>19251627</pubmed></ref><ref name=Vance2009><pubmed>19251628</pubmed></ref>、神経研究の分野で大きな注目を集めることになった。それ以降、[[TDP-43]]を含む多くの[[RNA結合タンパク質]]と同様にALSおよびその類縁疾患である[[前頭側頭葉変性症]] ([[FTLD]]) の病態に強く関係することが明らかにされてきた。
 これとは別に、FUSは[[pre-mRNA]]の成熟に関わる複合体のサブユニット[[hnRNP P2]]としても同定された<ref name=Calvio1995><pubmed>7585257</pubmed></ref>。そして2009年に2つのグループから[[家族性ALS]]の原因遺伝子であることが報告され<ref name=Kwiatkowski2009><pubmed>19251627</pubmed></ref><ref name=Vance2009><pubmed>19251628</pubmed></ref>、神経研究の分野で大きな注目を集めることになった。それ以降、[[TDP-43]]を含む多くの[[RNA結合タンパク質]]と同様にALSおよびその類縁疾患である[[前頭側頭葉変性症]] ([[FTLD]]) の病態に強く関係することが明らかにされてきた。


[[ファイル:2la6.pdb|300px|サムネイル|2LA6による]]
[[ファイル:Ishigaki_FUS_Fig2.png|300px|サムネイル|'''図1. FUSのドメイン構造'''<br>家族性ALSで認められた変異を示す。]]
[[ファイル:2la6.pdb|300px|サムネイル|'''図2. FUSのRRMドメインの立体構造'''<br>2LA6による]]
== 構造 ==
== 構造 ==
 タンパク質立体構造については、RNA認識モチーフ(RRM)がRNAのステムループ部分に、C末端の[[zinc finger motif|zinc finger (ZnF) motif]]がRNAのGGU配列を認識して結合することが報告されている<ref name=Loughlin2019><pubmed>30581145</pubmed></ref>。
 N末端にQGSY-rich領域、高度に保存されているRNA認識モチーフ(RRM)、[[アルギニン]]残基のジメチル化が特徴であるRGGリピート、およびC末端のzinc finger motifの構造を持つ('''図1''')。タンパク質立体構造については、RNA認識モチーフ(RRM)がRNAのステムループ部分に、C末端の[[zinc finger motif|zinc finger (ZnF) motif]]がRNAのGGU配列を認識して結合することが報告されている('''図2''')<ref name=Loughlin2019><pubmed>30581145</pubmed></ref>。


== サブファミリー ==
== サブファミリー ==
 FUSは[[FET protein family]]に含まれる。FET protein family には[[EWS]]、[[TAF15]]も含まれるが、どれも家族性ALSの原因遺伝子であることがわかっている<ref name=Bertolotti1999><pubmed>10637511</pubmed></ref><ref name=Morohoshi1998><pubmed>9795213</pubmed></ref><ref name=Svetoni2016><pubmed>27415968</pubmed></ref>。これら3つのFET protein familyはN末端のQGSY-rich領域、高度に保存されているRNA認識モチーフ(RRM)、[[アルギニン]]残基のジメチル化が特徴であるRGGリピート、およびC末端のzinc finger motifの構造が共通である<ref name=Crozat1993><pubmed>8510758</pubmed></ref><ref name=Prasad1994><pubmed>7970732</pubmed></ref><ref name=Morohoshi1998><pubmed>9795213</pubmed></ref><ref name=Iko2004><pubmed>15299008</pubmed></ref>。
 FUSは[[FET protein family]]に含まれる。FET protein family には[[EWS]]、[[TAF15]]も含まれるが、どれも家族性ALSの原因遺伝子であることがわかっている<ref name=Bertolotti1999><pubmed>10637511</pubmed></ref><ref name=Morohoshi1998><pubmed>9795213</pubmed></ref><ref name=Svetoni2016><pubmed>27415968</pubmed></ref>。これら3つのFET protein familyはドメイン構造が共通である<ref name=Crozat1993><pubmed>8510758</pubmed></ref><ref name=Prasad1994><pubmed>7970732</pubmed></ref><ref name=Morohoshi1998><pubmed>9795213</pubmed></ref><ref name=Iko2004><pubmed>15299008</pubmed></ref>。
[[ファイル:PBB GE FUS 200959 at fs.png|サムネイル|'''図3. FUSの組織発現パタン'''<br>Wikipediaより。元データーは<ref><pubmed>15075390</pubmed></ref>による。]]


== 組織分布、細胞内分布 ==
== 組織分布、細胞内分布 ==
20行目: 30行目:
 In vitro解析で,FUSはRNAおよび一本鎖[[DNA]]に結合性を示すものの二本鎖DNAにはほとんど結合しない<ref name=Crozat1993><pubmed>8510758</pubmed></ref><ref name=Wang2008><pubmed>18509338</pubmed></ref><ref name=Baechtold1999><pubmed>10567410</pubmed></ref><ref name=Zinszner1997><pubmed>9264461</pubmed></ref>。実際の生体内におけるFUSのRNA結合部位は複数のグループからFUSの[[CLIP-seq解析]]結果が報告されており、主にFUSは[[スプライシング]]を受ける前のpre-mRNAに結合し,特に選択的スプライシングを受ける[[exon]]周囲や,選択的転写開始・終結点を持つ領域に結合する。FUS認識RNAモチーフは明瞭ではないが,GUリッチな配列に指向性が認められ、FUS結合領域ではRNAは二次構造をとりやすい<ref name=Masuda2016><pubmed>27192881</pubmed></ref><ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Lagier-Tourenne2012><pubmed>23023293</pubmed></ref><ref name=Rogelj2012><pubmed>22934129</pubmed></ref><ref name=Lerga2001><pubmed>11098054</pubmed></ref>。
 In vitro解析で,FUSはRNAおよび一本鎖[[DNA]]に結合性を示すものの二本鎖DNAにはほとんど結合しない<ref name=Crozat1993><pubmed>8510758</pubmed></ref><ref name=Wang2008><pubmed>18509338</pubmed></ref><ref name=Baechtold1999><pubmed>10567410</pubmed></ref><ref name=Zinszner1997><pubmed>9264461</pubmed></ref>。実際の生体内におけるFUSのRNA結合部位は複数のグループからFUSの[[CLIP-seq解析]]結果が報告されており、主にFUSは[[スプライシング]]を受ける前のpre-mRNAに結合し,特に選択的スプライシングを受ける[[exon]]周囲や,選択的転写開始・終結点を持つ領域に結合する。FUS認識RNAモチーフは明瞭ではないが,GUリッチな配列に指向性が認められ、FUS結合領域ではRNAは二次構造をとりやすい<ref name=Masuda2016><pubmed>27192881</pubmed></ref><ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Lagier-Tourenne2012><pubmed>23023293</pubmed></ref><ref name=Rogelj2012><pubmed>22934129</pubmed></ref><ref name=Lerga2001><pubmed>11098054</pubmed></ref>。


 FUSは転写制御に関与していることが知られており<ref name=Coady2015><pubmed>26251528</pubmed></ref>、合成途中のRNAへの結合を介して[[RNAポリメラーゼII]]の転写速度を減弱させる。FUSのPrion like domainは,線維状の構造物を作ってRNAポリメラーゼIIのC末端領域と結合し、[[RNP顆粒]]の形成に関わっている<ref name=Masuda2016><pubmed>27192881</pubmed></ref><ref name=Lerga2001><pubmed>11098054</pubmed></ref><ref name=Masuda2015><pubmed>25995189</pubmed></ref><ref name=Schwartz2013><pubmed>24268778</pubmed></ref>。FUSはRNA結合を介し,積極的にポリアデニル化制御を行っており、mRNA長制御を中心にRNAプロセシングに深く関与し、神経分化やシナプス形成に関係する遺伝子の制御に関わると推測される<ref name=Sun2015><pubmed>25625564</pubmed></ref><ref name=Yamazaki2012><pubmed>23022481</pubmed></ref><ref name=Udagawa2015><pubmed>25968143</pubmed></ref><ref name=Yokoi2017><pubmed>28954225</pubmed></ref>。
 FUSは転写制御に関与していることが知られており<ref name=Coady2015><pubmed>26251528</pubmed></ref>、合成途中のRNAへの結合を介して[[RNAポリメラーゼII]]の転写速度を減弱させる。FUSのPrion like domainは,線維状の構造物を作ってRNAポリメラーゼIIのC末端領域と結合し、[[RNP顆粒]]の形成に関わっている<ref name=Masuda2016><pubmed>27192881</pubmed></ref><ref name=Lerga2001><pubmed>11098054</pubmed></ref><ref name=Masuda2015><pubmed>25995189</pubmed></ref><ref name=Schwartz2013><pubmed>24268778</pubmed></ref>。FUSはRNA結合を介し,積極的にポリアデニル化制御を行っており、[[mRNA]]長制御を中心にRNAプロセシングに深く関与し、神経分化やシナプス形成に関係する遺伝子の制御に関わると推測される<ref name=Sun2015><pubmed>25625564</pubmed></ref><ref name=Yamazaki2012><pubmed>23022481</pubmed></ref><ref name=Udagawa2015><pubmed>25968143</pubmed></ref><ref name=Yokoi2017><pubmed>28954225</pubmed></ref>。


 一方、FUSは[[spliceosome]]に含まれ、[[SFPQ]]、[[NONO]]、[[hnRNPA1]]、TDP-43、[[SMN]]、他のFET proteinなど多くのRNPと結合し選択的スプライシングに関与することが知られている<ref name=Coady2015><pubmed>26251528</pubmed></ref><ref name=Sun2015><pubmed>25625564</pubmed></ref><ref name=An2019><pubmed>30642400</pubmed></ref><ref name=Ishigaki2017><pubmed>28147269</pubmed></ref><ref name=Kahl2018><pubmed>29426953</pubmed></ref><ref name=Tsuiji2013><pubmed>23255347</pubmed></ref>。FUSは[[MAPT]]、[[Camk2a]]、および[[Fmr1]]といった神経変性に関連する分子などの選択的スプライシングを制御する<ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Lagier-Tourenne2012><pubmed>23023293</pubmed></ref><ref name=Rogelj2012><pubmed>22934129</pubmed></ref><ref name=Orozco2013><pubmed>23974990</pubmed></ref><ref name=Fujioka2013><pubmed> 23925123 </pubmed></ref>。とくに、[[タウ]]の遺伝子であるMAPTはexon10の制御はタウの代表的アイソフォームである[[3-repeat tau]]と[[4-repeat tau]]の生成に直結し、FUSの機能低下が結果としてタウのisoformである4-repeat tauが増加させることが複数のグループから報告されている<ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Orozco2013><pubmed>23974990</pubmed></ref><ref name=Fujioka2013><pubmed> 23925123 </pubmed></ref><ref name=Orozco2012><pubmed>22710833</pubmed></ref>。
 一方、FUSは[[spliceosome]]に含まれ、[[SFPQ]]、[[NONO]]、[[hnRNPA1]]、TDP-43、[[SMN]]、他のFET proteinなど多くのRNPと結合し選択的スプライシングに関与することが知られている<ref name=Coady2015><pubmed>26251528</pubmed></ref><ref name=Sun2015><pubmed>25625564</pubmed></ref><ref name=An2019><pubmed>30642400</pubmed></ref><ref name=Ishigaki2017><pubmed>28147269</pubmed></ref><ref name=Kahl2018><pubmed>29426953</pubmed></ref><ref name=Tsuiji2013><pubmed>23255347</pubmed></ref>。FUSは[[MAPT]]、[[Camk2a]]、および[[Fmr1]]といった神経変性に関連する分子などの選択的スプライシングを制御する<ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Lagier-Tourenne2012><pubmed>23023293</pubmed></ref><ref name=Rogelj2012><pubmed>22934129</pubmed></ref><ref name=Orozco2013><pubmed>23974990</pubmed></ref><ref name=Fujioka2013><pubmed> 23925123 </pubmed></ref>。とくに、[[タウ]]の遺伝子であるMAPTはexon10の制御はタウの代表的アイソフォームである[[3-repeat tau]]と[[4-repeat tau]]の生成に直結し、FUSの機能低下が結果としてタウのisoformである4-repeat tauが増加させることが複数のグループから報告されている<ref name=Ishigaki2012><pubmed>22829983</pubmed></ref><ref name=Orozco2013><pubmed>23974990</pubmed></ref><ref name=Fujioka2013><pubmed> 23925123 </pubmed></ref><ref name=Orozco2012><pubmed>22710833</pubmed></ref>。
28行目: 38行目:
 FUSは核だけではなく、細胞質すなわち樹状突起や軸索内にも存在して[[RNA輸送]]や[[局所翻訳]]、[[軸索ガイダンス]]などの制御を介して神経細胞の機能維持に働いている<ref name=Fujii2005><pubmed>16317045</pubmed></ref><ref name=Sephton2014><pubmed>25324524</pubmed></ref><ref name=Errichelli2017><pubmed>28358055</pubmed></ref>。
 FUSは核だけではなく、細胞質すなわち樹状突起や軸索内にも存在して[[RNA輸送]]や[[局所翻訳]]、[[軸索ガイダンス]]などの制御を介して神経細胞の機能維持に働いている<ref name=Fujii2005><pubmed>16317045</pubmed></ref><ref name=Sephton2014><pubmed>25324524</pubmed></ref><ref name=Errichelli2017><pubmed>28358055</pubmed></ref>。


 FUSの全身[[ノックアウトマウス]]は背景により異なったフェノタイプを示す。[[C57/B6]]の[[近交系]]では[[免疫系]]の異常により出生してすぐに死に至る一方で、非近交系では[[精子]]形成異常以外はほぼ正常に生育することが報告されている<ref name=Hicks2000><pubmed>10655065</pubmed></ref><ref name=Kuroda2000><pubmed>10654943</pubmed></ref>。
 FUSの全身[[ノックアウトマウス]]は背景により異なったフェノタイプを示す。[[C57BL/6]]の[[近交系]]では[[免疫系]]の異常により出生してすぐに死に至る一方で、非近交系では[[精子]]形成異常以外はほぼ正常に生育することが報告されている<ref name=Hicks2000><pubmed>10655065</pubmed></ref><ref name=Kuroda2000><pubmed>10654943</pubmed></ref>。
[[ファイル:Ishigaki_FUS_Fig4.png|300px|サムネイル|'''図4. 典型的なbasophilic inclusion body disease (BIBD)症例'''<br>68歳男性、臨床診断ALS、全経過6年。<br>
'''A.''' ヘマトキシリン・エオジン(HE)染色では境界明瞭な好塩基性の細胞質内封入体がみられる。<br>
'''B.''' 境界不明瞭で染色の淡い封入体も多いので、注意する。<br>
'''C.''' 好塩基性封入体は、Klüver-Barrera染色で観察しやすい。内部に線条を呈する封入体として観察される。<br>
'''D.''' 好塩基性封入体は抗FUS免疫組織化学で標識される。<br>
愛知医科大学加齢医科学研究所の陸雄一先生による。スケール=10 μm。
]]


== 疾患との関わり ==
== 疾患との関わり ==
 FUSは家族性ALS([[ALS6]])の原因遺伝子であり、家族性ALS の原因遺伝子として,わが国では[[SOD1]]に次いで頻度が高い遺伝子と考えられており、C末側に多く認められほとんどがpoint mutationである<ref>'''青木正志 (2013).'''<br>FUS変異によるALS臨床病理と病態, 臨床神経 53:1080-1083</ref>。病理学的にはFUSが核内から細胞質に局在が変化して[[ユビキチン]]陽性の[[細胞質封入体]]として神経細胞内に認められることが特徴である。FUSに変異が存在しない孤発性のALSにおいても、このようなFUSの病理所見が陽性の症例が存在し、塩基性封入体が特徴であることから[[basophilic inclusion body disease]] (BIBD)と呼ばれる。ALSは[[認知症]]の1つであるFTLDと臨床的、病理学的、遺伝学的に同一の疾患スペクトラムを形成すると考えられ、FTLD症例にもFUS陽性の病理像を示すグループが存在し、[[FTLD-FUS]]と称される。
 FUSは家族性ALS([[ALS6]])の原因遺伝子であり、家族性ALS の原因遺伝子として、わが国ではSOD1に次いで頻度が高い遺伝子と考えられており家族性ALSのうち4-9%を占める。ほとんどの症例は優性遺伝(顕性遺伝)形式である。変異はC末側に多く認められほとんどがpoint mutationである('''図1''')<ref>'''青木正志 (2013).'''<br>FUS変異によるALS臨床病理と病態, 臨床神経 53:1080-1083 [https://www.neurology-jp.org/Journal/public_pdf/053111080.pdf [PDF]]</ref>。病理学的にはFUSが核内から細胞質に局在が変化して[[ユビキチン]]陽性の[[細胞質封入体]]として神経細胞内に認められることが特徴である。FUSに変異が存在しない孤発性のALSにおいても、このようなFUSの病理所見が陽性の症例が存在し、塩基性封入体が特徴であることから[[basophilic inclusion body disease]] (BIBD)と呼ばれる。ALSは[[認知症]]の1つであるFTLDと臨床的、病理学的、遺伝学的に同一の疾患スペクトラムを形成すると考えられ、FTLD症例にもFUS陽性の病理像を示すグループが存在し、[[FTLD-FUS]]と称される。


 FUS変異による家族性ALSの中には、[[発達障害]]や[[精神疾患]]を併発するものあること、FUSの変異によって非特異的な[[タウオパチー]]を呈する症例があること、核内でのFUSの局在変化がALS, FTLDのみならず、[[4Rタウオパチー]]である[[進行性核上性麻痺]]([[PSP]])や[[大脳皮質基底核変性症]]([[CBD]])症例でも認められること、などからFUSはより広範な神経精神疾患のメカニズムに関わる可能性が示唆されている<ref name=Ishigaki2020><pubmed>32770214</pubmed></ref><ref name=Ferrer2015><pubmed>25756587</pubmed></ref><ref name=Baumer2010><pubmed>20668261</pubmed></ref><ref name=Yamashita2012><pubmed>22057404</pubmed></ref>。
 FUS変異による家族性ALSの中には、[[発達障害]]や[[精神疾患]]を併発するものあること、FUSの変異によって非特異的な[[タウオパチー]]を呈する症例があること、核内でのFUSの局在変化がALS, FTLDのみならず、[[4Rタウオパチー]]である[[進行性核上性麻痺]]([[PSP]])や[[大脳皮質基底核変性症]]([[CBD]])症例でも認められること、などからFUSはより広範な神経精神疾患のメカニズムに関わる可能性が示唆されている<ref name=Ishigaki2020><pubmed>32770214</pubmed></ref><ref name=Ferrer2015><pubmed>25756587</pubmed></ref><ref name=Baumer2010><pubmed>20668261</pubmed></ref><ref name=Yamashita2012><pubmed>22057404</pubmed></ref>。