「GSK-3β」の版間の差分

797 バイト追加 、 2012年9月6日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
GSK-3betaの基質は、本来のリン酸化部位のC末に位置する"priming"残基が先にリン酸化(priming phosphorylation)を受けている方が効率よくリン酸化できる。GSK-3betaのactivation loop (T-loop)に位置するスレオニン216のリン酸化により基質結合部位が開き、アルギニン96, アルギニン180, リシン205からなるpositively charged pocketにリン酸化された基質の"priming"残基が結合する。この結合によってキナーゼドメインの方向が最適化され、基質がGSK-3betaのcatalytic&nbsp;grooveの適切な位置にはまりリン酸化をうける<sup>[1]</sup>。&nbsp;    
GSK-3betaの基質は、本来のリン酸化部位のC末に位置する"priming"残基が先にリン酸化(priming phosphorylation)を受けている方が効率よくリン酸化できる。GSK-3betaのactivation loop (T-loop)に位置するスレオニン216のリン酸化により基質結合部位が開き、アルギニン96, アルギニン180, リシン205からなるpositively charged pocketにリン酸化された基質の"priming"残基が結合する。この結合によってキナーゼドメインの方向が最適化され、基質がGSK-3betaのcatalytic&nbsp;grooveの適切な位置にはまりリン酸化をうける<sup>[1]</sup>。&nbsp;    
<pre>=シグナル伝達に関する経路=</pre><pre>==Wntシグナル経路==</pre>
<pre>=シグナル伝達に関する経路=</pre><pre>==Wntシグナル経路==</pre>
Wntの非存在下では、GSK-3 betaはβ-catenin, Axinやがん抑制遺伝子産物APC, casein kinase 1αと複合体を形成しており、この複合体内でcasein kinase 1αとともに効率よくβ-cateninをリン酸化する。リン酸化されたβ-cateninはユビキチン化を受け、プロテオソーム内で分解される。Wntが7回膜貫通型受容体のFrizzled(Fz)と1回膜貫通型受容体のLRP5/6に結合すると、そのシグナルが細胞内に伝達されDishevelledがGSK-3 beta依存性のβ-catenin,のリン酸化を抑制する。低リン酸化状態のβ-cateninはプロテオゾーム内での分解を免れ、細胞質内に蓄積し核へ移行しWnt - β-catenin経路下流の遺伝子発現を調節する。
Wntの非存在下では、GSK-3 betaはβ-catenin, Axinやがん抑制遺伝子産物APC, casein kinase 1αと複合体を形成しており、この複合体内でcasein kinase 1αとともに効率よくβ-cateninをリン酸化する。リン酸化されたβ-cateninはユビキチン化を受け、プロテオソーム内で分解される。Wntが7回膜貫通型受容体のFrizzled(Fz)と1回膜貫通型受容体のLRP5/6に結合すると、そのシグナルが細胞内に伝達されDishevelledがGSK-3 beta依存性のβ-catenin,のリン酸化を抑制する。低リン酸化状態のβ-cateninはプロテオゾーム内での分解を免れ、細胞質内に蓄積し核へ移行しWnt - β-catenin経路下流の遺伝子発現を調節する[文献]。
<pre>==Shhシグナル経路==</pre>
<pre>==Shhシグナル経路==</pre>
GSK-3 betaはヘッジホッグシグナルでも重要な役割を果たしている。ヘッジホッグシグナルはショウジョウバエから哺乳類にいたる様々な生物に見られるシグナル経路である[文献]。  
GSK-3 betaはヘッジホッグシグナルでも重要な役割を果たしている。ヘッジホッグシグナルはショウジョウバエから哺乳類にいたる様々な生物に見られるシグナル経路である[文献]。  


ヘッジホッグシグナルは、シグナル受容体であるPatched (Ptc) とシグナルトランスデューサーであるSmoothened (Smo) によって調節されている。ヘッジホッグタンパクが存在しない時、PtcがSmoの活性化を抑制している。この状態では、ヘッジホッグシグナル下流分子であるCubitus interruptus (Ci) は、GSK-3 beta - サイクリン依存性キナーゼ阻害因子 (CKI)&nbsp; - プロテインキナーゼC (PKA) 複合体にリン酸化され、プロセスシングをうけ不活性型になる。ヘッジホッグタンパクがPtcと結合すると、GSK-3 betaを含む複合体からCiが解離しリン酸化を受けていない活性型の状態で核に移行、ヘッジホッグシグナル下流分子の転写活性を上昇させる。
ヘッジホッグシグナルは、シグナル受容体であるPatched (Ptc) とシグナルトランスデューサーであるSmoothened (Smo) によって調節されている。ヘッジホッグタンパクが存在しない時、PtcがSmoの活性化を抑制している。この状態では、ヘッジホッグシグナル下流分子であるCubitus interruptus (Ci) は、GSK-3 beta - サイクリン依存性キナーゼ阻害因子 (CKI)&nbsp; - プロテインキナーゼC (PKA) 複合体にリン酸化され、プロセスシングをうけ抑制型になる。ヘッジホッグタンパクがPtcと結合すると、GSK-3 betaを含む複合体からCiが解離しリン酸化を受けていない活性型の状態で核に移行、ヘッジホッグシグナル下流分子の転写活性を上昇させる[文献]。


ヘッジホッグの脊椎動物ホモログの一つであるソニックヘッジホッグは、哺乳類の神経系も含めた胚発生に大事な役目を果たしている。脊椎動物では、Gli1, Gli2, Gli3という3種類のCiホモログが存在している。Gli1は活性型のみで、Gli2とGli3は活性型と不活性型の2つの形態をとる。脊椎動物では、GSK-3 betaはSupressor of Fused (Sufu) と複合体を形成している。ソニックヘッジホッグが存在しない時、Gli2または
ヘッジホッグの脊椎動物ホモログの一つであるソニックヘッジホッグは、哺乳類の神経系も含めた胚発生に大事な役目を果たしている。脊椎動物では、Gli1, Gli2, Gli3という3種類のCiホモログが存在している。Gli1は活性型のみで、Gli2とGli3は活性型と不活性型の2つの形態をとる。脊椎動物では、GSK-3 betaはSupressor of Fused (Sufu) と複合体を形成している。ソニックヘッジホッグが存在しない時、Gli2またはGli3はGSK-3 betaによってリン酸化を受けprimary ciliumでプロセスシングをうけ抑制型になる。Gli2の抑制型はプロテオソームで速やかに分解されるが、Gli3の抑制型は核に移行しソニックヘッジホッグシグナル下流の転写因子の発現を抑制する。ソニックヘッジホッグが存在するときは、Gli2またはGli3はGSK-3 beta-Sufu 複合体と解離し核に移行する。核に移行したGli2は、ソニックヘッジホッグシグナル下流の転写因子の発現を促進する。Gli3では活性型ではなく抑制型がソニックヘッジホッグシグナル下流の因子の転写調節をになている[文献]。
<pre>=PI3キナーゼ/Akt/GSK-3 beta/CRMP-2シグナル経路</pre>
71

回編集