GSK-3β

提供: 脳科学辞典
これは、このページの承認済み版です。最新版ではありません。 最新版を閲覧
移動先: 案内検索

河野利恵太田訓正
熊本大学 大学院生命科学研究部
DOI:10.14931/bsd.2409 原稿受付日:2012年10月9日 原稿完成日:2013年3月25日
担当編集委員:大隅 典子(東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)

Glycogen synthase kinase 3 beta
PDB rendering based on 1gng.
Identifiers
Symbol GSK3B
External IDs OMIM605004 MGI1861437 HomoloGene55629 GeneCards: GSK3B Gene
EC number 2.7.11.26 2.7.11.1, 2.7.11.26
RNA expression pattern
PBB GE GSK3B 209945 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 2932 56637
Ensembl ENSG00000082701 ENSMUSG00000022812
UniProt P49841 Q9WV60
RefSeq (mRNA) NM_001146156.1 NM_019827.6
RefSeq (protein) NP_001139628.1 NP_062801.1
Location (UCSC) Chr 3:
119.54 – 119.81 Mb
Chr 16:
38.09 – 38.25 Mb
PubMed search [1] [2]

英語名:Glycogen synthase kinase 3β 英略称:GSK-3β

 グリコーゲン合成酵素キナーゼ3(GSK)は、プロリン指向性セリン/スレオニンリン酸化酵素のひとつであり、最初にグリコーゲン合成酵素リン酸化して不活化する酵素として見出された。そのうちGSK-3βは、Wnt, Shhなどのシグナル伝達の制御に関与しており、胚発生における体軸形成や神経系の分化に重要な役割を果たしている[1]

ファミリー

 哺乳類では、GSK-3は51 kDaのα (GSK-3α)と47kDaのβ(GSK-3β)の二つのアイソフォームに分類される[2]。これらの2つのアイソフォームは、キナーゼドメイン内では98%と高い相同性を示すが、76個のC末アミノ酸残基では36%の相同性しかない。GSK-3βには、GSK-3β1とそのスプライシング変異体であるGSK-3β2が存在する。GSK-3β2の量はGSK-3β全体の15%以下であり、GSK-3βのキナーゼドメイン内に13アミノ酸残基の挿入を認める。

 GSK-3β2は、tauタンパク質に対するキナーゼ活性がGSK-3βよりも減弱している[3]

構造

図1:Gsk-3βの2次元構造
Gsk-3βは、多くの"activation-segment"タンパクキナーゼと同様にアミノ末端βシートドメインとカルボシキル末端αへリックスドメインを持つ。[4]より引用。
図2:Gsk-3βのダイマー構造
Gsk-3βはダイマーとして結晶化されることより、ダイマー構造をとると考えられる。[4]より引用。

Gsk-3βは、多くの”activation-segment”タンパクキナーゼと同様にアミノ末端βシートドメインとカルボシキル末端αへリックスドメインを持つ(図1)。Gsk-3βはダイマーとして結晶化されることより、ダイマー構造をとっていると考えられる(図2)[4]

活性調節

基質のプライミングリン酸化による調節

図3:Gsk-3βに対する基質結合モデル
Gsk-3βの活性中心(P0)に隣接するアルギニン96、アルギニン180、リシン205からなるpositively charged pocket(P+4)に”priming”残基のリン酸基が結合する。この結合によってGsk-3βのキナーゼドメインの方向が最適化され、基質がGsk-3βの活性中心の適切な位置にはまりリン酸化を受ける。[4]より引用。

Gsk-3βの基質は、グリコーゲン合成酵素、translation initiation factor elF2B, C/EBFα転写因子、βカテニンなどがあげられる。Gsk-3βの基質は、本来のリン酸化部位のカルボシキル末に位置する”priming”残基が先にリン酸化を受けることによって効率よくリン酸化を受ける。GSK-3βのactivation loop (T-loop)に位置するスレオニン216のリン酸化により基質結合部位が開き、その活性中心(P0)に隣接するアルギニン96、アルギニン180、リシン205からなるpositively charged pocket(P+4)に”priming”残基のリン酸基が結合する(図3)。この結合によってGsk-3βのキナーゼドメインの方向が最適化され、基質がGsk-3βの活性中心の適切な位置にはまりリン酸化を受ける。[4]

Aktによるリン酸化による調節

図4:セリン9のリン酸化によるGsk-3βキナーゼ活性の抑制
Gsk-3βのセリン9がpositively charged pocket(P+4)を占領することで、Gsk-3βのアミノ末端がcompetitive pseudosubstrateとしてGsk-3βの活性中心に結合する。[4]より引用。

 GSK-3βは、細胞が静止状態にあるときには活性型である。細胞がインスリンなどの物質で処理をされると、GSK-3βはホスファチジルイノシトール‐3キナーゼ(PI-3K)の関与で不活化される。つまり、インスリンなどで処理された細胞の内部ではPI-3K-Akt経路が活性化し、その結果GSK-3βのセリン9のリン酸化が起こり不活性型となる[4]。 これはGsk-3βのセリン9がpositively charged pocket(P+4)を占領することでリン酸化されたGsk-3βのアミノ末端がcompetitive pseudosubstrateとしてGsk-3βの活性中心に結合するためでないかと考えられる(図4)。[4]

発現

図5:GSK3s不活性化モデル
a. Phosphatidylinositol 3-kinase pathwayによる不活性化
b. p38 mitogen-activated protein kinase (p38MAPK)による不活性化
c. Wnt pathwayによる不活性化
d. Disrupted in schizophremea 1(DISC1)との相互作用による調節
e. Partitioning defective homologue (PAR) complex による調節
[5]より引用。

組織発現パターン

 Gsk-3β1の発現は様々な組織で認められるのに対して、Gsk-3β2は特に発生過程の脳に強く発現している[5]

細胞内発現パターン

 細胞内でGsk-3βは、細胞質に存在し様々なタンパク質と相互作用し細胞内シグナル伝達に関与している(図5)[5]

機能

Wntシグナル経路

 Wntの非存在下では、GSK-3βはβ-カテニンAxinがん抑制遺伝子産物APC, カゼインキナーゼ1αと複合体を形成しており、この複合体内でカゼインキナーゼ1αとともに効率よくβ-カテニンをリン酸化する。リン酸化されたβ-カテニンはユビキチン化を受け、プロテオソーム内で分解される。Wntが7回膜貫通型受容体Frizzled(Fz)と1回膜貫通型受容体のLRP5/6に結合すると、そのシグナルが細胞内に伝達されDishevelledがGSK-3β依存性のβ-カテニンのリン酸化を抑制する。低リン酸化状態のβ-カテニンはプロテオソーム内での分解を免れ、細胞質内に蓄積してへ移行しWnt-β-カテニン経路下流の遺伝子発現を調節する[5]

Shhシグナル経路

 GSK-3βはヘッジホッグシグナルでも重要な役割を果たしている。ヘッジホッグシグナルはショウジョウバエから哺乳類にいたる様々な生物に見られるシグナル伝達経路である[6]

 ヘッジホッグシグナルは、シグナル受容体であるPatched (Ptc) とシグナルトランスデューサーであるSmoothened (Smo) によって調節されている。ヘッジホッグタンパクが存在しない時、PtcがSmoの活性化を抑制している。この状態では、ヘッジホッグシグナル下流分子であるCubitus interruptus (Ci) は、GSK-3β-サイクリン依存性キナーゼ阻害因子 (CKI)-プロテインキナーゼA (PKA) 複合体にリン酸化され、プロセッシングを受け抑制型になる。ヘッジホッグタンパクがPtcと結合すると、GSK-3βを含む複合体からCiが解離しリン酸化を受けていない活性型の状態で核に移行、ヘッジホッグシグナル下流分子の転写活性を上昇させる[7] [8]

 ヘッジホッグの脊椎動物ホモログの一つであるソニックヘッジホッグは、哺乳類の神経系も含めた胚発生に大事な役目を果たしている。脊椎動物では、Gli1, Gli2, Gli3という3種類のCiホモログが存在している。Gli1は活性型のみで、Gli2とGli3は活性型と不活性型の2つの形態をとる。脊椎動物では、GSK-3βはSupressor of Fused (Sufu) と複合体を形成している。ソニックヘッジホッグが存在しない時、Gli2またはGli3はGSK-3βによってリン酸化を受けprimary ciliumでプロセスシングをうけ抑制型になる。Gli2の抑制型はプロテオソームで速やかに分解されるが、Gli3の抑制型は核に移行しソニックヘッジホッグシグナル下流の転写因子の発現を抑制する。ソニックヘッジホッグが存在するときは、Gli2またはGli3はGSK-3β-Sufu複合体と解離し核に移行する。核に移行したGli2は、ソニックヘッジホッグシグナル下流の転写因子の発現を促進する。Gli3では活性型ではなく抑制型がソニックヘッジホッグシグナル下流の因子の転写調節をになっている[9]

PI3キナーゼ/Akt/GSK-3β/CRMP-2シグナル経路

 CRMP-2 (Collapsin response mediating protein-2) は神経軸索形成を誘導する因子として、神経細胞の極性決定に重要な役割を担っている[10]。CRMP-2は微小管の構成分子であるチューブリン等と結合して微小管の重合を促進するとともに、軸索形成に必要なタンパク質の輸送や接着分子のリサイクリングにも関与し軸索伸長を制御している[11]

 PI3キナーゼはAktを介してGSK-3βを制御している。GSK-3βがCRMP-2のスレオニン154をリン酸化すると、CRMP-2は不活性化しチューブリンとの結合能が低下し神経軸索形成が抑制される[12]

関連項目

参考文献

  1. S E Plyte, K Hughes, E Nikolakaki, B J Pulverer, J R Woodgett

    Glycogen synthase kinase-3: functions in oncogenesis and development.
    Biochim. Biophys. Acta: 1992, 1114(2-3);147-62 [PubMed:1333807] [WorldCat.org]

  2. V Stambolic, J R Woodgett

    Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation.
    Biochem. J.: 1994, 303 ( Pt 3);701-4 [PubMed:7980435] [WorldCat.org]

  3. Alison Wood-Kaczmar, Michaela Kraus, Koichi Ishiguro, Karen L Philpott, Phillip R Gordon-Weeks

    An alternatively spliced form of glycogen synthase kinase-3beta is targeted to growing neurites and growth cones.
    Mol. Cell. Neurosci.: 2009, 42(3);184-94 [PubMed:19607922] [WorldCat.org] [DOI]

  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 R Dajani, E Fraser, S M Roe, N Young, V Good, T C Dale, L H Pearl

    Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition.
    Cell: 2001, 105(6);721-32 [PubMed:11440715] [WorldCat.org]

  5. 5.0 5.1 5.2 5.3 Eun-Mi Hur, Feng-Quan Zhou

    GSK3 signalling in neural development.
    Nat. Rev. Neurosci.: 2010, 11(8);539-51 [PubMed:20648061] [WorldCat.org] [DOI]

  6. Y Echelard, D J Epstein, B St-Jacques, L Shen, J Mohler, J A McMahon, A P McMahon

    Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity.
    Cell: 1993, 75(7);1417-30 [PubMed:7916661] [WorldCat.org]

  7. Mary Ann Price, Daniel Kalderon

    Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1.
    Cell: 2002, 108(6);823-35 [PubMed:11955435] [WorldCat.org]

  8. Margery G Smelkinson, Daniel Kalderon

    Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb.
    Curr. Biol.: 2006, 16(1);110-6 [PubMed:16386907] [WorldCat.org] [DOI]

  9. Yan Chen, Shen Yue, Lu Xie, Xiao-hong Pu, Tian Jin, Steven Y Cheng

    Dual Phosphorylation of suppressor of fused (Sufu) by PKA and GSK3beta regulates its stability and localization in the primary cilium.
    J. Biol. Chem.: 2011, 286(15);13502-11 [PubMed:21317289] [WorldCat.org] [DOI]

  10. Yuko Fukata, Tomohiko J Itoh, Toshihide Kimura, Céline Ménager, Takashi Nishimura, Takashi Shiromizu, Hiroyasu Watanabe, Naoyuki Inagaki, Akihiro Iwamatsu, Hirokazu Hotani, Kozo Kaibuchi

    CRMP-2 binds to tubulin heterodimers to promote microtubule assembly.
    Nat. Cell Biol.: 2002, 4(8);583-91 [PubMed:12134159] [WorldCat.org] [DOI]

  11. N Inagaki, K Chihara, N Arimura, C Ménager, Y Kawano, N Matsuo, T Nishimura, M Amano, K Kaibuchi

    CRMP-2 induces axons in cultured hippocampal neurons.
    Nat. Neurosci.: 2001, 4(8);781-2 [PubMed:11477421] [WorldCat.org] [DOI]

  12. Takeshi Yoshimura, Yoji Kawano, Nariko Arimura, Saeko Kawabata, Akira Kikuchi, Kozo Kaibuchi

    GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity.
    Cell: 2005, 120(1);137-49 [PubMed:15652488] [WorldCat.org] [DOI]