「ROCK」の版間の差分

ナビゲーションに移動 検索に移動
4,893 バイト追加 、 2016年6月22日 (水)
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の17版が非表示)
4行目: 4行目:
''<sup>2</sup> 長崎大学創薬研究教育センター''<br>
''<sup>2</sup> 長崎大学創薬研究教育センター''<br>
<sup>*</sup> equally contributed to this work<br>
<sup>*</sup> equally contributed to this work<br>
DOI:<selfdoi /> 原稿受付日:2016年4月21日 原稿完成日:2016年月日<br>
DOI:<selfdoi /> 原稿受付日:2016年4月21日 原稿完成日:2016年6月22日<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
</div>
</div>


同義語:Rhoキナーゼ
同義語:Rho-associated coiled-coil-containing protein kinase、Rhoキナーゼ (Rho-kinase, ROK)


{{box|text= ROCKは活性型の低分子量GTP結合タンパク質Rhoにより活性化される分子量約160 kDaのセリン・スレオニンタンパク質リン酸化酵素であり、哺乳類にはROCK-IとROCK-IIの2つのアイソフォームが存在する。ROCKはミオシン軽鎖とミオシン軽鎖脱リン酸化酵素のリン酸化を介してミオシン軽鎖を活性化する。さらに、LIMキナーゼのリン酸化を介してアクチン脱重合因子であるコフィリンを不活化し、アクチン脱重合を抑制する。これらの作用が協調して、Rho依存的なアクトミオシン束の形成を促す。その他にもROCKは数多くの基質をリン酸化して、細胞運動、細胞極性、細胞接着、細胞分裂、アポトーシス、転写制御など多様な生命機能に関わる<ref name=ref1><pubmed>12778124</pubmed></ref> <ref name=ref2><pubmed>20803696</pubmed></ref>。神経系においても、発生・発達期における神経管形成、神経突起伸展制御、シナプス形成に加え、成体でのシナプス可塑性に至るまで幅広い役割を担う。}}
{{box|text= ROCKは活性型の低分子量GTP結合タンパク質Rhoにより活性化される分子量約160 kDaのセリン・スレオニンタンパク質リン酸化酵素であり、哺乳類にはROCK-IとROCK-IIの2つのアイソフォームが存在する。ROCKはミオシン軽鎖とミオシン軽鎖脱リン酸化酵素のリン酸化を介してミオシン軽鎖を活性型構造に変化させる。さらに、LIMキナーゼのリン酸化を介してアクチン脱重合因子であるコフィリンを不活化し、アクチン脱重合を抑制する。これらの作用が協調して、Rho依存的なアクトミオシン束の形成を促す。その他にもROCKは数多くの基質をリン酸化して、細胞運動、細胞極性、細胞接着、細胞分裂、アポトーシス、転写制御など多様な生命機能に関わる<ref name=ref1><pubmed>12778124</pubmed></ref> <ref name=ref2><pubmed>20803696</pubmed></ref>。神経系においても、発生・発達期における神経管形成、神経突起伸展制御、シナプス形成に加え、成体でのシナプス可塑性に至るまで幅広い役割を担う。}}
 
{{GNF_Protein_box
| Name = Rho-associated, coiled-coil containing protein kinase 1
| image = Protein_ROCK1_PDB_1s1c.png
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1s1c.
| PDB = {{PDB2|1S1C}}, {{PDB2|2ESM}}, {{PDB2|2ETK}}, {{PDB2|2ETR}}, {{PDB2|2V55}}, {{PDB2|3D9V}}, {{PDB2|3NCZ}}, {{PDB2|3NDM}}, {{PDB2|3O0Z}}, {{PDB2|3TV7}}, {{PDB2|3TWJ}}, {{PDB2|3V8S}}, {{PDB2|4L2W}}, {{PDB2|4W7P}}
| HGNCid = 10251
| MGIid = 107927
| Symbol = ROCK1
| AltSymbols =; P160ROCK; ROCK-I
| IUPHAR =
| ChEMBL = 3231
| OMIM = 601702
| ECnumber = 2.7.11.1
| Homologene = 55899
| GeneAtlas_image1 =
| GeneAtlas_image2 =
| GeneAtlas_image3 =
| Protein_domain_image =
| Function = {{GNF_GO|id=GO:0004672 |text = protein kinase activity}} {{GNF_GO|id=GO:0004674 |text = protein serine/threonine kinase activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0017049 |text = GTP-Rho binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0000139 |text = Golgi membrane}} {{GNF_GO|id=GO:0001726 |text = ruffle}} {{GNF_GO|id=GO:0005814 |text = centriole}} {{GNF_GO|id=GO:0005829 |text = cytosol}} {{GNF_GO|id=GO:0005856 |text = cytoskeleton}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0030027 |text = lamellipodium}} {{GNF_GO|id=GO:0032059 |text = bleb}}
| Process = {{GNF_GO|id=GO:0003383 |text = apical constriction}} {{GNF_GO|id=GO:0006468 |text = protein phosphorylation}} {{GNF_GO|id=GO:0006915 |text = apoptotic process}} {{GNF_GO|id=GO:0006921 |text = cellular component disassembly involved in execution phase of apoptosis}} {{GNF_GO|id=GO:0006939 |text = smooth muscle contraction}} {{GNF_GO|id=GO:0007159 |text = leukocyte cell-cell adhesion}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007264 |text = small GTPase mediated signal transduction}} {{GNF_GO|id=GO:0007266 |text = Rho protein signal transduction}} {{GNF_GO|id=GO:0007411 |text = axon guidance}} {{GNF_GO|id=GO:0012501 |text = programmed cell death}} {{GNF_GO|id=GO:0016525 |text = negative regulation of angiogenesis}} {{GNF_GO|id=GO:0022614 |text = membrane to membrane docking}} {{GNF_GO|id=GO:0030036 |text = actin cytoskeleton organization}} {{GNF_GO|id=GO:0030155 |text = regulation of cell adhesion}} {{GNF_GO|id=GO:0032060 |text = bleb assembly}} {{GNF_GO|id=GO:0032091 |text = negative regulation of protein binding}} {{GNF_GO|id=GO:0032956 |text = regulation of actin cytoskeleton organization}} {{GNF_GO|id=GO:0043524 |text = negative regulation of neuron apoptotic process}} {{GNF_GO|id=GO:0045616 |text = regulation of keratinocyte differentiation}} {{GNF_GO|id=GO:0048010 |text = vascular endothelial growth factor receptor signaling pathway}} {{GNF_GO|id=GO:0048013 |text = ephrin receptor signaling pathway}} {{GNF_GO|id=GO:0050900 |text = leukocyte migration}} {{GNF_GO|id=GO:0050901 |text = leukocyte tethering or rolling}} {{GNF_GO|id=GO:0051451 |text = myoblast migration}} {{GNF_GO|id=GO:0051492 |text = regulation of stress fiber assembly}} {{GNF_GO|id=GO:0051893 |text = regulation of focal adhesion assembly}} {{GNF_GO|id=GO:0051894 |text = positive regulation of focal adhesion assembly}} {{GNF_GO|id=GO:2000114 |text = regulation of establishment of cell polarity}} {{GNF_GO|id=GO:2000145 |text = regulation of cell motility}}
| Hs_EntrezGene = 6093
| Hs_Ensembl = ENSG00000067900
| Hs_RefseqmRNA = NM_005406
| Hs_RefseqProtein = NP_005397
| Hs_GenLoc_db = hg38
| Hs_GenLoc_chr = 18
| Hs_GenLoc_start = 20946906
| Hs_GenLoc_end = 21111851
| Hs_Uniprot = Q13464
| Mm_EntrezGene = 19877
| Mm_Ensembl = ENSMUSG00000024290
| Mm_RefseqmRNA = NM_009071
| Mm_RefseqProtein = NP_033097
| Mm_GenLoc_db = mm10
| Mm_GenLoc_chr = 18
| Mm_GenLoc_start = 10064401
| Mm_GenLoc_end = 10181792
| Mm_Uniprot = P70335
| path = PBB/6093
}}


==はじめに==
==はじめに==
 1985年に[[RhoA]]が新規の[[低分子量GTP結合タンパク質]]として同定されて以来、[[Rho]]を選択的に不活化する[[ボツリヌス菌]]由来の菌体外酵素[[ボツリヌス毒素#C3型|C3]]や、Rhoの[[活性化変異体]]や[[不活性化変異体]]を用いた解析により、[[アクチン]][[細胞骨格]]の再編成におけるRhoの重要性が示された<ref name=ref3><pubmed>12478284</pubmed></ref>。しかし当時はRhoの標的タンパク質は同定されておらず、Rhoの下流の細胞内情報伝達系は不明であった。GTP結合型(活性型)RhoAとの選択的結合を指標とした[[yeast two hybrid法]]、[[アフィニティー・クロマトグラフィー]]、[[リガンドオーバーレイ法]]などにより、Rho標的タンパク質が次々に同定された<ref name=ref4><pubmed>8889802</pubmed></ref> <ref name=ref5><pubmed>21235928</pubmed></ref>。
 1985年に[[RhoA]]が新規の[[低分子量GTP結合タンパク質]]として同定されて以来、[[Rho]]を選択的に不活化する[[ボツリヌス菌]]由来の菌体外酵素[[ボツリヌス毒素#C3型|C3]]や、Rhoの[[活性化変異体]]や[[不活性化変異体]]を用いた解析により、[[アクチン]][[細胞骨格]]の再編成におけるRhoの重要性が示された<ref name=ref3><pubmed>12478284</pubmed></ref>。しかし当時はRhoの標的タンパク質は同定されておらず、Rhoの下流の細胞内情報伝達系は不明であった。GTP結合型(活性型)RhoAとの選択的結合を指標とした[[yeast two hybrid法]]、[[アフィニティー・クロマトグラフィー]]、[[リガンドオーバーレイ法]]などにより、Rho標的タンパク質が次々に同定された<ref name=ref4><pubmed>8889802</pubmed></ref> <ref name=ref5><pubmed>21235928</pubmed></ref>。


 Rho-associated coiled-coil-containing protein kinase(ROCK, Rho-kinase, ROK)は活性型Rhoにより活性化される[[セリン]]・[[スレオニン]][[タンパク質リン酸化酵素]]である<ref name=ref6><pubmed>7493923</pubmed></ref> <ref name=ref7><pubmed>8641286</pubmed></ref> <ref name=ref8><pubmed>8617235</pubmed></ref>。
 Rho-associated coiled-coil-containing protein kinase(ROCK)は、このように同定されたRho標的タンパク質の一つであり、活性型Rhoにより活性化される[[セリン]]・[[スレオニン]][[タンパク質リン酸化酵素]]である<ref name=ref6><pubmed>7493923</pubmed></ref> <ref name=ref7><pubmed>8641286</pubmed></ref> <ref name=ref8><pubmed>8617235</pubmed></ref>。


==ファミリー==
==ファミリー==
21行目: 63行目:


== 構造および活性化機構 ==
== 構造および活性化機構 ==
 どちらのアイソフォームもN末端側からキナーゼ領域、[[コイルド・コイル]]領域、Rho結合領域、[[PHドメイン|PH]]([[プレックスリン相同ドメイン|プレックスリン相同]])ドメインを有する。ROCKのC末端領域にはROCKのキナーゼ活性を抑制する自己阻害領域が存在し、活性型RhoがROCKのRho結合領域に結合することでこの抑制が解除され、ROCKのキナーゼ活性が亢進する<ref name=ref16><pubmed>12954645</pubmed></ref>。ROCKはN末端領域同士で二量体を形成し、この二量体形成はROCKのキナーゼ活性に必須であると考えられている<ref name=ref17><pubmed>16249185</pubmed></ref> <ref name=ref18><pubmed>16531242</pubmed></ref>。
[[ファイル:ROCK1.jpg|300px|サムネイル|右|'''図1. マウスのROCKアイソフォームのドメイン構造''']]
 
 どちらのアイソフォームもN末端側からキナーゼ領域、[[コイルド・コイル]]領域、Rho結合領域、[[PHドメイン|PH]]([[プレックスリン相同ドメイン|プレックスリン相同]])領域、高システイン領域を有する(図1)。
 
ROCKのC末端領域にはROCKのキナーゼ活性を抑制する自己阻害領域が存在し、活性型RhoがROCKのRho結合領域に結合することでこの抑制が解除され、ROCKのキナーゼ活性が亢進する<ref name=ref16><pubmed>12954645</pubmed></ref>。ROCKはN末端領域同士で二量体を形成し、この二量体形成はROCKのキナーゼ活性に必須であると考えられている<ref name=ref17><pubmed>16249185</pubmed></ref> <ref name=ref18><pubmed>16531242</pubmed></ref>。


== 発現 ==
== 発現 ==
28行目: 74行目:
==機能==
==機能==
=== 基質タンパク質 ===
=== 基質タンパク質 ===
 ROCKは[[ミオシン軽鎖脱リン酸化酵素]](myosin light chain phosphatase; MLCP)をリン酸化してその酵素活性を抑制し、[[ミオシン軽鎖]](myosin light chain; MLC)のリン酸化と活性化を促す。またROCKはミオシン軽鎖を直接リン酸化し活性化することも知られる<ref name=ref9><pubmed>8662509</pubmed></ref> <ref name=ref10><pubmed>9353125</pubmed></ref>。
 ROCKは[[ミオシン軽鎖脱リン酸化酵素]](myosin light chain phosphatase; MLCP)をリン酸化してその酵素活性を抑制し、[[ミオシン軽鎖]](myosin light chain; MLC)のリン酸化とそれによる活性型構造への変化を促す。またROCKはミオシン軽鎖を直接リン酸化し活性化することも知られる<ref name=ref9><pubmed>8662509</pubmed></ref> <ref name=ref10><pubmed>9353125</pubmed></ref>。


 さらにROCKはリン酸化によりLIMキナーゼを活性化し、LIMキナーゼはアクチン脱重合因子[[コフィリン]]のリン酸化を促す<ref name=ref11><pubmed>10436159</pubmed></ref>。このリン酸化によりコフィリンは不活化されアクチン脱重合が阻害される。これらの作用が協調することで、ROCKはRho依存的な[[アクトミオシン]]束の形成に寄与し、細胞に収縮力を与える。その他、[[アデュシン]]、[[ERMタンパク質]]([[エズリン]]、[[ラディキシン]]、[[モイエシン]])、I型[[Na+-H+交換体|Na<sup>+</sup>-H<sup>+</sup>交換体]]、[[中間径フィラメント]]([[ビメンチン]]、[[グリア線維性酸性タンパク質]], [[ニューロフィラメント]])、[[微小管]]結合タンパク質([[MAP2]], [[タウタンパク質]])、[[コラプシン反応媒介タンパク質2]]([[CRMP2]])、[[Par3]]などがROCKの基質の候補分子として同定されている<ref name=ref1 /> <ref name=ref2 /> <ref name=ref12><pubmed>17901255</pubmed></ref>。特にROCKによる[[CRMP2]]リン酸化が[[微小管]]制御を介し[[エフリンA5]]による神経突起退縮を促すこと<ref name=ref13><pubmed>16260611</pubmed></ref>、ROCKによるPar3リン酸化が遊走細胞の[[前後軸]]形成を促すこと<ref name=ref14><pubmed>18267089</pubmed></ref>などが示されている。
 さらにROCKはリン酸化によりLIMキナーゼを活性化し、LIMキナーゼはアクチン脱重合因子[[コフィリン]]のリン酸化を促す<ref name=ref11><pubmed>10436159</pubmed></ref>。このリン酸化によりコフィリンは不活化されアクチン脱重合が阻害される。これらの作用が協調することで、ROCKはRho依存的な[[アクトミオシン]]束の形成に寄与し、細胞に収縮力を与える。その他、[[アデュシン]]、[[ERMタンパク質]]([[エズリン]]、[[ラディキシン]]、[[モイエシン]])、I型[[Na+-H+交換体|Na<sup>+</sup>-H<sup>+</sup>交換体]]、[[中間径フィラメント]]([[ビメンチン]]、[[グリア線維性酸性タンパク質]], [[ニューロフィラメント]])、[[微小管]]結合タンパク質([[MAP2]], [[タウタンパク質]])、[[コラプシン反応媒介タンパク質2]]([[CRMP2]])、[[Par3]]などがROCKの基質の候補分子として同定されている<ref name=ref1 /> <ref name=ref2 /> <ref name=ref12><pubmed>17901255</pubmed></ref>。特にROCKによる[[CRMP2]]リン酸化が[[微小管]]制御を介し[[エフリンA5]]による神経突起退縮を促すこと<ref name=ref13><pubmed>16260611</pubmed></ref>、ROCKによるPar3リン酸化が遊走細胞の[[前後軸]]形成を促すこと<ref name=ref14><pubmed>18267089</pubmed></ref>などが示されている。
===神経系での機能===
===神経系での機能===
====神経管形成====
====神経管形成====
 [[神経管]]は外胚葉に由来する[[神経板]]が背側方向に閉鎖することで形成されるが、この過程には神経板を構成する神経上皮細胞の頂端側での[[アクトミオシン]]収縮力が必要である。神経上皮細胞の頂端側で見られるミオシン軽鎖のリン酸化がROCK-IとROCK-IIの阻害薬であるY27632(Ref. 10)により消失すること21、さらにY-27632やMyosin IIの特異的阻害薬であるBlebbistatinがトリやマウスの胚の神経管閉鎖を阻害することが示された<ref name=ref21><pubmed>26040287</pubmed></ref> <ref name=ref22><pubmed>11532918</pubmed></ref>。以上の結果は、ROCKによるアクトミオシン収縮が神経管閉鎖に重要であることを示唆している。さらなる研究により、アダプタータンパク質Shroom3により神経管内腔側(神経上皮細胞の頂端側に相当する)にROCKが局在化し、さらに[[PDZ]]-RhoGEFにより活性化されたRhoがROCKを活性化することが示されている<ref name=ref23><pubmed>18339671</pubmed></ref> <ref name=ref24><pubmed>22632972</pubmed></ref>。
 [[神経管]]は外胚葉に由来する[[神経板]]が背側方向に閉鎖することで形成されるが、この過程には神経板を構成する[[神経上皮細胞]]の頂端側での[[アクトミオシン]]収縮力が必要である。神経上皮細胞の頂端側で見られるミオシン軽鎖のリン酸化がROCK-IとROCK-IIの阻害薬である[[Y-27632]]<ref name=ref10 />により消失すること<ref name=ref21 />、さらにY-27632や[[ミオシンII]]の特異的[[阻害薬]]である[[ブレビスタチン]]がトリやマウスの胚の神経管閉鎖を阻害することが示された<ref name=ref21><pubmed>26040287</pubmed></ref> <ref name=ref22><pubmed>11532918</pubmed></ref>。以上の結果は、ROCKによるアクトミオシン収縮が神経管閉鎖に重要であることを示唆している。さらなる研究により、[[アダプタータンパク質]][[Shroom3]]により神経管内腔側(神経上皮細胞の頂端側に相当する)にROCKが局在化し、さらに[[PDZ-RhoGEF]]により活性化されたRhoがROCKを活性化することが示されている<ref name=ref23><pubmed>18339671</pubmed></ref> <ref name=ref24><pubmed>22632972</pubmed></ref>。


====神経突起の伸展====
====神経突起の伸展====
 神経突起の形成と伸展は、突起先端の[[成長円錐]]でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化から成る。成長円錐は高い運動性を持った扇形の構造であり、[[軸索]]ガイダンス因子による軸索の伸長や退縮、さらに軸索伸長の方向の制御に深く関わる(参照:脳科学辞典 [[成長円錐]])。
[[ファイル:rock2.jpg|300px|サムネイル|右|'''図2. 神経突起伸展開始制御におけるRho-ROCKシグナル経路の関与''']]
[[ファイル:ROCK3.jpg|300px|サムネイル|右|'''図3. EphAによる軸索退縮へのRho-ROCKシグナル経路の関与''']]
 
 神経突起の形成と伸展は、突起先端の[[成長円錐]]でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化から成る。成長円錐は高い運動性を持った扇形の構造であり、[[軸索ガイダンス]]因子による軸索の伸長や退縮、さらに軸索伸長の方向の制御に深く関わる(''詳細は[[成長円錐]]の項目参照'')。


 ROCK阻害薬Y-27632やミオシン阻害薬Blebbistatinを用いた実験から、アメフラシの成長円錐でのアクチン動態やアクトミオシン束の形成にROCKによるミオシン活性化が重要であることが示されている<ref name=ref25><pubmed>14659092</pubmed></ref> <ref name=ref26><pubmed>16501565</pubmed></ref>。さらに、[[げっ歯類]]の[[初代培養神経]]細胞では、神経突起の伸展がROCK阻害薬Y-27632により促進し、ROCKの活性化変異体により抑制されることから、ROCKの活性化が神経突起の伸展を抑制することが明らかとなった<ref name=ref27><pubmed>15630019</pubmed></ref>。小脳顆粒細胞ではROCKが神経突起の伸展の開始を抑制し神経突起の数を決定すること、その過程にRho-ROCK-LIM kinase経路によるアクチン脱重合抑制が重要であることが示された<ref name=ref28><pubmed>10839361</pubmed></ref>。さらにROCKは軸索ガイダンス因子であるEphrinA5による軸索退縮に重要である。EphrinA5はEphAに結合し、Rho GEFであるEphexinを介してRhoを活性化する<ref name=ref29><pubmed>11336673</pubmed></ref>。Rhoにより活性化されたROCKは、アクトミオシン束を形成するとともに、CRMP-2による微小管重合を抑制する<ref name=ref13 />。[[CRMP-2]]は[[チュブリン]]二量体に結合して微小管形成を促進するタンパク質であり、ROCKによるリン酸化はその機能を抑制する。また、RhoAの活性化変異体やリゾホスファチジン酸(LPA)によるRhoの活性化は、樹状突起の複雑さを減少させる<ref name=ref30><pubmed>10884317</pubmed></ref>。この樹状突起の単純化は、ROCK阻害薬Y-27632で抑制され、ROCKの活性化変異体により[[模倣]]されることから、Rho-ROCK経路は樹状突起の枝分かれを抑制すると考えられている。
 ROCK阻害薬Y-27632やミオシン阻害薬ブレビスタチンを用いた実験から、[[アメフラシ]]の成長円錐でのアクチン動態やアクトミオシン束の形成にROCKによる[[ミオシン]]活性化が重要であることが示されている<ref name=ref25><pubmed>14659092</pubmed></ref> <ref name=ref26><pubmed>16501565</pubmed></ref>。さらに、[[げっ歯類]]の[[初代培養神経]]細胞では、神経突起の伸展がROCK阻害薬Y-27632により促進し、ROCKの活性化変異体により抑制されることから、ROCKの活性化が神経突起の伸展を抑制することが明らかとなった<ref name=ref27><pubmed>15630019</pubmed></ref>。小脳顆粒細胞ではROCKが神経突起の伸展の開始を抑制し神経突起の数を決定すること、その過程にRho-ROCK-LIMキナーゼ経路によるアクチン脱重合抑制が重要であることが示された(図2)<ref name=ref28><pubmed>10839361</pubmed></ref>。さらにROCKは軸索ガイダンス因子であるエフリンA5による軸索退縮に重要である(図3)。エフリンA5はEphAに結合し、Rhoグアニンヌクレオチド交換因子GEFである[[エフェキシン]]を介してRhoを活性化する<ref name=ref29><pubmed>11336673</pubmed></ref>。Rhoにより活性化されたROCKは、アクトミオシン束を形成するとともに、CRMP-2による微小管重合を抑制する<ref name=ref13 />。[[CRMP-2]]は[[チュブリン]]二量体に結合して微小管形成を促進するタンパク質であり、ROCKによるリン酸化はその機能を抑制する。また、RhoAの活性化変異体やリゾホスファチジン酸(LPA)によるRhoの活性化は、樹状突起の複雑さを減少させる<ref name=ref30><pubmed>10884317</pubmed></ref>。この樹状突起の単純化は、ROCK阻害薬Y-27632で抑制され、ROCKの活性化変異体により[[模倣]]されることから、Rho-ROCK経路は樹状突起の枝分かれを抑制すると考えられている。


 [[軸索再生]]においてもROCKは抑制的に働く。[[脊髄損傷]]後の軸索再生は、[[myelin-associated glycoprotein]]([[MAG]])、[[Nogo]]-A、chondroitin sulfate proteoglycans (CSPGs)、oligodendrocyte myelin glycoprotein(OMgp)などの[[ミエリン]]および[[オリゴデンドロサイト]]由来の軸索伸展抑制因子により阻害される。これらの抑制因子の作用はROCK阻害薬Y-27632により抑制される<ref name=ref31><pubmed>25374504</pubmed></ref>。さらにROCK-II欠損マウス由来の後根神経節細胞では、Nogo-22やCSPGsによる軸索伸展抑制作用が減弱することから<ref name=ref32><pubmed>19955379</pubmed></ref>、これらの軸索伸展抑制因子の作用にはROCK-IIが必須である。興味深いことに、ROCKII欠損マウスでは、脊髄損傷後の軸索再生が促進されることも報告されており<ref name=ref32 />、脊髄損傷の治療薬としてのROCK阻害薬の可能性が検討されている<ref name=ref33><pubmed>23298675</pubmed></ref>。
 [[軸索再生]]においてもROCKは抑制的に働く。[[脊髄損傷]]後の軸索再生は、[[myelin-associated glycoprotein]]([[MAG]])、[[Nogo-A]]、[[コンドロイチン硫酸プロテオグリカン]]([[CSPGs]])、[[oligodendrocyte myelin glycoprotein]]([[OMgp]])などの[[ミエリン]]および[[オリゴデンドロサイト]]由来の軸索伸展抑制因子により阻害される。これらの抑制因子の作用はROCK阻害薬Y-27632により抑制される<ref name=ref31><pubmed>25374504</pubmed></ref>。さらにROCK-II欠損マウス由来の後根神経節細胞では、Nogo-22やCSPGsによる軸索伸展抑制作用が減弱することから<ref name=ref32><pubmed>19955379</pubmed></ref>、これらの軸索伸展抑制因子の作用にはROCK-IIが必須である。興味深いことに、ROCKII欠損マウスでは、脊髄損傷後の軸索再生が促進されることも報告されており<ref name=ref32 />、脊髄損傷の治療薬としてのROCK阻害薬の可能性が検討されている<ref name=ref33><pubmed>23298675</pubmed></ref>。
 
 
====シナプス形成とシナプス可塑性====
====シナプス形成とシナプス可塑性====
 樹状突起スパインは、神経細胞の樹状突起から突き出たアクチン細胞骨格に富む小さな突起であり、中枢神経系の主な[[興奮性シナプス]]入力部位である。スパインの形態変化はアクチン再構築に依存することから、ROCKの関与について興味が持たれてきた。[[スライス培養]]した[[海馬]][[CA1]]の錐体神経細胞では、ROCK阻害薬Y-27632によりスパインの長さが増大し、スパインの運動性が亢進する<ref name=ref34><pubmed>15234347</pubmed></ref>。海馬初代培養神経細胞では、Myosin IIB阻害薬Blebbistatinの処理やRNA干渉法によるMyosin IIbの発現抑制もスパインの長さの増大とスパインの運動性の亢進を引き起こす<ref name=ref35><pubmed>16423692</pubmed></ref>。これらの結果から、ROCKはMyosin IIbを活性化してスパインの安定化を促すと考えられている。
 [[樹状突起]][[スパイン]]は、神経細胞の樹状突起から突き出たアクチン細胞骨格に富む小さな突起であり、中枢神経系の主な[[興奮性シナプス]]入力部位である。スパインの形態変化はアクチン再構築に依存することから、ROCKの関与について興味が持たれてきた。[[スライス培養]]した[[海馬]][[CA1]]の錐体神経細胞では、ROCK阻害薬Y-27632によりスパインの長さが増大し、スパインの運動性が亢進する<ref name=ref34><pubmed>15234347</pubmed></ref>。海馬初代培養神経細胞では、ミオシンIIB阻害薬ブレビスタチンの処理やRNA干渉法によるミオシンIIbの発現抑制もスパインの長さの増大とスパインの運動性の亢進を引き起こす<ref name=ref35><pubmed>16423692</pubmed></ref>。これらの結果から、ROCKはミオシンIIbを活性化してスパインの安定化を促すと考えられている。


 海馬スライスのCA1錐体神経細胞での実験では、スパインの大きさとAMPA型[[グルタミン酸受容体]]を介した[[シナプス]]後電流が相関する<ref name=ref36><pubmed>11687814</pubmed></ref>。さらにスパインは長期増強(long-term potentiation)に伴い増大し、長期抑圧(long-term depression)に伴い縮小することから、シナプス可塑性におけるスパインの形態変化の意義が示唆されてきた<ref name=ref37><pubmed>15190253</pubmed></ref> <ref name=ref38><pubmed>15361876</pubmed></ref>。グルタミン酸受容体の局所的な活性化によりスパインの増大が誘導されるが、このスパイン増大の初期相がRhoの活性阻害や発現抑制、ROCK阻害薬Glycyl-H-1152により抑制されることが示された。さらに、グルタミン酸受容体活性化によるスパインでのRhoAの活性化はCaMKII阻害薬で減弱した。これらの結果から、グルタミン酸受容体はCaMKIIを介してRho-ROCK経路を活性化しスパイン増大を誘導すると考えられている<ref name=ref39><pubmed>21423166</pubmed></ref>。
 [[海馬]]スライスの[[CA1]][[錐体神経細胞]]での実験では、スパインの大きさと[[AMPA型グルタミン酸受容体]]を介した[[シナプス後電流]]が相関する<ref name=ref36><pubmed>11687814</pubmed></ref>。さらにスパインは[[長期増強]](long-term potentiation)に伴い増大し、[[長期抑圧]](long-term depression)に伴い縮小することから、[[シナプス可塑性]]におけるスパインの形態変化の意義が示唆されてきた<ref name=ref37><pubmed>15190253</pubmed></ref> <ref name=ref38><pubmed>15361876</pubmed></ref>。グルタミン酸受容体の局所的な活性化によりスパインの増大が誘導されるが、このスパイン増大の初期相がRhoの活性阻害や発現抑制、ROCK阻害薬[[Glycyl-H-1152]]により抑制されることが示された。さらに、グルタミン酸受容体活性化によるスパインでのRhoAの活性化は[[CaMKII]]阻害薬で減弱した。これらの結果から、グルタミン酸受容体はCaMKIIを介してRho-ROCK経路を活性化しスパイン増大を誘導すると考えられている<ref name=ref39><pubmed>21423166</pubmed></ref>。


 このRho-ROCK経路の役割に合致し、ROCK-II欠損マウスでは海馬の[[シャッファー側枝]]とCA1[[錐体細胞]]の間の[[グルタミン酸]]作動性シナプス伝達の長期増強が減弱している<ref name=ref40><pubmed>18718479</pubmed></ref>。海馬スライス培養では、シナプス活動やNMDA受容体刺激はROCK依存的にスパインにおけるミオシン軽鎖リン酸化を誘導する。さらにシャッファー側枝-CA1シナプスでのシナプス伝達の長期増強がMyosin IIbの発現抑制やMyosinII阻害薬Blebbistatinの処理により減弱する<ref name=ref41><pubmed>20797537</pubmed></ref>。これらの結果は、グルタミン酸受容体による長期増強にRho-ROCK経路を介したアクトミオシン束形成が重要であることを示唆している。
 このRho-ROCK経路の役割に合致し、ROCK-II欠損マウスでは海馬の[[シャッファー側枝]]とCA1[[錐体細胞]]の間の[[グルタミン酸]]作動性シナプス伝達の長期増強が減弱している<ref name=ref40><pubmed>18718479</pubmed></ref>。海馬スライス培養では、シナプス活動やNMDA受容体刺激はROCK依存的にスパインにおけるミオシン軽鎖リン酸化を誘導する。さらにシャッファー側枝-CA1シナプスでのシナプス伝達の長期増強がミオシンIIbの発現抑制やミオシンII阻害薬ブレビスタチンの処理により減弱する<ref name=ref41><pubmed>20797537</pubmed></ref>。これらの結果は、グルタミン酸受容体による長期増強にRho-ROCK経路を介したアクトミオシン束形成が重要であることを示唆している。


 神経活動に影響を与えるその他のROCKの働きも示唆されているが、その詳細については不明な点が多い。例えば、脳幹スライス培養を用いた実験では、ROCK阻害薬H1152により[[シナプス前終末]]のアクティブゾーンへの[[シナプス小胞]]のドッキングが抑制される<ref name=ref42><pubmed>22219271</pubmed></ref>。LPAにより活性化したROCKがT型カルシウムチャネルをリン酸化し、Cav3.1を抑制し、Cav3.2を促進することも報告されている<ref name=ref43><pubmed>17558400</pubmed></ref>。
 神経活動に影響を与えるその他のROCKの働きも示唆されているが、その詳細については不明な点が多い。例えば、脳幹スライス培養を用いた実験では、ROCK阻害薬H1152により[[シナプス前終末]]の[[アクティブゾーン]]への[[シナプス小胞]]のドッキングが抑制される<ref name=ref42><pubmed>22219271</pubmed></ref>。[[リゾホスファチジン酸]] ([[LPA]])により活性化したROCKが[[T型カルシウムチャネル]]を[[リン酸化]]し、[[Cav3.1]]を抑制し、[[Cav3.2]]を促進することも報告されている<ref name=ref43><pubmed>17558400</pubmed></ref>。


 記憶・学習におけるROCKの役割についても報告されている。[[恐怖条件付け]]直前の外側[[扁桃体]]へのROCK阻害薬Y-27632の局所注入では、[[短期記憶]]は保持されるものの[[長期記憶]]の形成が阻害される<ref name=ref44><pubmed>12441060</pubmed></ref>。モリス水迷路試験を用いた研究では、学習後の海馬へのROCK阻害薬Y-27632の局所注入が空間記憶の保持を低下させることが報告されている<ref name=ref45><pubmed>15336547</pubmed></ref>。しかし、記憶・学習を担うシナプス可塑性やそれに伴うスパインの形態変化にROCKが関与するかについては今後の課題である。
 [[記憶]][[学習]]におけるROCKの役割についても報告されている。[[恐怖条件づけ]]直前の[[外側扁桃体]]へのROCK阻害薬Y-27632の局所注入では、[[短期記憶]]は保持されるものの[[長期記憶]]の形成が阻害される<ref name=ref44><pubmed>12441060</pubmed></ref>。[[モリス水迷路試験]]を用いた研究では、学習後の海馬へのROCK阻害薬Y-27632の局所注入が空間記憶の保持を低下させることが報告されている<ref name=ref45><pubmed>15336547</pubmed></ref>。しかし、記憶・学習を担うシナプス可塑性やそれに伴うスパインの形態変化にROCKが関与するかについては今後の課題である。


==関連項目==
==関連項目==

案内メニュー