49
回編集
Yukihashimotodani (トーク | 投稿記録) 細 (ページの作成:「DSIとはニューロンが脱分極したときに、そのニューロンに入力している抑制性シナプス応答が一過性(1〜2分間程度)に抑制...」) |
Yukihashimotodani (トーク | 投稿記録) 細編集の要約なし |
||
1行目: | 1行目: | ||
英略称: DSI | |||
Depolarization-induced suppression of inhibition (DSI)とはニューロンが脱分極したときに、そのニューロンに入力している抑制性シナプス応答が一過性(1〜2分間程度)に抑制される現象をいう(図1)。同じ現象が興奮性シナプスで起こる場合、depolarization-induced suppression of excitation (DSE)と呼ぶ。エンドカンナビノイド(内因性カンナビノイド)が担う逆行性シナプス伝達の一種である。DSI/DSEのメカニズムは以下のとおりである。脱分極による細胞内へのカルシウムイオン流入によってエンドカンナビノイドの一種である2-アラキドノイルグリセロール(2-AG)が産生される。シナプス後部でつくられた2-AGは細胞外へ放出され、シナプス間隙を逆行しシナプス前終末に局在するカンナビノイド受容体I型(CB1)に結合し活性化する。CB1受容体の活性化によって神経伝達物質の放出が一過性に抑制される。DSI及びDSEの発生条件として、そのニューロンに2-AGを産生する能力(2-AG合成酵素の有無)があり、かつ入力するシナプス前終末にCB1受容体が存在することが必要である。脳の広範囲のシナプスにおいてDSIやDSEが引き起こされることが知られている。 | |||
==歴史== | ==歴史== | ||
DSIは1991年に小脳で最初に報告された。小脳のプルキンエ細胞を脱分極させると一過性にプルキンエ細胞で記録される抑制性入力であるGABA応答が抑制されることが報告された | DSIは1991年に小脳で最初に報告された。小脳のプルキンエ細胞を脱分極させると一過性にプルキンエ細胞で記録される抑制性入力であるGABA応答が抑制されることが報告された<ref><pubmed> 2015092 </pubmed></ref>。翌1992年には海馬CA1野の錐体細胞を脱分極させると小脳と同様に一過性にGABA応答が抑制されることが報告された<ref><pubmed> 1403103 </pubmed></ref>。この二つの研究およびその後の研究からDSIはシナプス後部のニューロンの細胞内カルシウムイオン濃度上昇により誘導され、最終的にはシナプス前終末からのGABAの放出が抑制される現象であることが明らかになった。したがってシナプス後部ニューロンから何らかの逆行性伝達物質が放出されて、それがシナプス前部に作用することが予想された。 | ||
==逆行性伝達物質の発見== | ==逆行性伝達物質の発見== | ||
DSIの発見からおよそ10年の年月を経た2001年にようやく逆行性伝達物質の正体が突き止められた。同時に3つの独立した研究グループからエンドカンナビノイドが逆行性伝達物質であることが報告された(Kreitzer and Regehr, 2001a; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。そのうちの2つのグループは海馬のDSIにおいてエンドカンナビノイドが逆行性伝達物質であることを明らかにした(Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。残りのグループは小脳においてDSIと同様の現象が興奮性シナプスで起こることを初めて報告しDSEと命名した(Kreitzer and Regehr, 2001a)。このDSEもエンドカンナビノイドによって担われることが明らかになった。DSIの最初の報告であった小脳のDSIもエンドカンナビノイドが逆行性伝達物質であることがわかった(Kreitzer and Regehr, 2001b; Yoshida et al., 2002)。以降現在までに、海馬、小脳、線条体、大脳皮質、扁桃体、脳幹など脳の様々な部位でDSIやDSEが起こることが報告されている(Kano et al., 2009)。 | DSIの発見からおよそ10年の年月を経た2001年にようやく逆行性伝達物質の正体が突き止められた。同時に3つの独立した研究グループからエンドカンナビノイドが逆行性伝達物質であることが報告された<ref><pubmed> 2015092 </pubmed></ref><ref><pubmed> 2015092 </pubmed></ref><ref><pubmed> 2015092 </pubmed></ref>(Kreitzer and Regehr, 2001a; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。そのうちの2つのグループは海馬のDSIにおいてエンドカンナビノイドが逆行性伝達物質であることを明らかにした(Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001)。残りのグループは小脳においてDSIと同様の現象が興奮性シナプスで起こることを初めて報告しDSEと命名した(Kreitzer and Regehr, 2001a)。このDSEもエンドカンナビノイドによって担われることが明らかになった。DSIの最初の報告であった小脳のDSIもエンドカンナビノイドが逆行性伝達物質であることがわかった(Kreitzer and Regehr, 2001b; Yoshida et al., 2002)。以降現在までに、海馬、小脳、線条体、大脳皮質、扁桃体、脳幹など脳の様々な部位でDSIやDSEが起こることが報告されている(Kano et al., 2009)。 | ||
==2−アラキドノイルグリセロール== | ==2−アラキドノイルグリセロール== | ||
25行目: | 27行目: | ||
DSI/DSEはネガティブフィードバックとして働き局所回路においてシナプス伝達を制御すると考えられる。短期のシナプス可塑性であるDSIは神経回路の計算論的観点からも注目されている(Abbott and Regehr, 2004)。またDSIがメタ可塑性に関わることが示唆されている。海馬CA1において閾値以下のテタヌス刺激では長期増強(LTP)を引き起こさないような場合でもテタヌス刺激に先行してDSIを誘導させると次に来る閾値以下であった刺激でもLTPが誘導されることが報告されている(Carlson et al., 2002)。DSIによる脱抑制が原因であると考えられる。 | DSI/DSEはネガティブフィードバックとして働き局所回路においてシナプス伝達を制御すると考えられる。短期のシナプス可塑性であるDSIは神経回路の計算論的観点からも注目されている(Abbott and Regehr, 2004)。またDSIがメタ可塑性に関わることが示唆されている。海馬CA1において閾値以下のテタヌス刺激では長期増強(LTP)を引き起こさないような場合でもテタヌス刺激に先行してDSIを誘導させると次に来る閾値以下であった刺激でもLTPが誘導されることが報告されている(Carlson et al., 2002)。DSIによる脱抑制が原因であると考えられる。 | ||
DSIおよびDSEを誘導するには細胞内のカルシウム濃度がマイクロモーラーレベルにまで達しなければならない。実際に生理的条件下でそのように大きなカルシウム濃度上昇を引き起こすほどニューロンが長時間脱分極するかどうかは疑わしい。したがってDSIが生理的な現象であることを疑問視する報告もある(Hampson et al., 2003)。しかし一方で、小脳プルキンエ細胞や背側蝸牛神経核にあるCartwheel細胞の持続的な発火によるマイクロモーラー以下のカルシウム濃度上昇でもDSIまたはDSEが起こることからDSI/DSEが生理的現象である可能性も示唆されている(Brenowitz et al., 2006; Sedlacek et al., 2011)。エンドカンナビノイドはDSIのような細胞内カルシウム濃度上昇だけでなく、グループI代謝型グルタミン酸受容体といったGq/11タンパク質共役型受容体の活性化によっても産生・放出される(Maejima et al., 2001)。さらに前述のいわゆる「DSIの促進効果」により弱い脱分極でもGq/11タンパク質共役型受容体の活性化と組合わさると、効率よく逆行性シナプス伝達抑制が引き起こされる。したがって生理的条件下ではDSIが単独で起こるよりもGq/11タンパク質共役型受容体の活性化を伴った神経活動によってエンドカンナビノイドによる逆行性シナプス伝達抑制が引き起こされると考えられる(Hashimotodani et al., 2007a)。生理的役割とは別にDSI/DSEは着目するシナプスにおいて、エンドカンナビノイドによる逆行性シナプス伝達抑制を誘導する能力(シナプス後部にDGLが存在し、シナプス前終末にCB1受容体が存在する)があるかどうかを試すプロトコールとしても用いられる。 | DSIおよびDSEを誘導するには細胞内のカルシウム濃度がマイクロモーラーレベルにまで達しなければならない。実際に生理的条件下でそのように大きなカルシウム濃度上昇を引き起こすほどニューロンが長時間脱分極するかどうかは疑わしい。したがってDSIが生理的な現象であることを疑問視する報告もある(Hampson et al., 2003)。しかし一方で、小脳プルキンエ細胞や背側蝸牛神経核にあるCartwheel細胞の持続的な発火によるマイクロモーラー以下のカルシウム濃度上昇でもDSIまたはDSEが起こることからDSI/DSEが生理的現象である可能性も示唆されている(Brenowitz et al., 2006; Sedlacek et al., 2011)。エンドカンナビノイドはDSIのような細胞内カルシウム濃度上昇だけでなく、グループI代謝型グルタミン酸受容体といったGq/11タンパク質共役型受容体の活性化によっても産生・放出される(Maejima et al., 2001)。さらに前述のいわゆる「DSIの促進効果」により弱い脱分極でもGq/11タンパク質共役型受容体の活性化と組合わさると、効率よく逆行性シナプス伝達抑制が引き起こされる。したがって生理的条件下ではDSIが単独で起こるよりもGq/11タンパク質共役型受容体の活性化を伴った神経活動によってエンドカンナビノイドによる逆行性シナプス伝達抑制が引き起こされると考えられる(Hashimotodani et al., 2007a)。生理的役割とは別にDSI/DSEは着目するシナプスにおいて、エンドカンナビノイドによる逆行性シナプス伝達抑制を誘導する能力(シナプス後部にDGLが存在し、シナプス前終末にCB1受容体が存在する)があるかどうかを試すプロトコールとしても用いられる。 | ||
==参考文献== | |||
<references/> |
回編集