「Depolarization-induced suppression of inhibition」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
17行目: 17行目:


==Gq/11共役型受容体活性化による、いわゆる「DSIの促進」==
==Gq/11共役型受容体活性化による、いわゆる「DSIの促進」==
グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体のアゴニスト存在下でニューロンを脱分極させると、一見、DSI(あるいはDSE)が促進される<ref name=ref6 />。すなわち弱い脱分極でも現象として、大きなDSIを引き起こすことができる。この現象のメカニズムとして、以下のことが明らかになっている。グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体はPLCβを活性化する。PLCβがカルシウム感受性を持つため、受容体活性化に加えて脱分極による細胞内カルシウム流入が生じると、PLCβ活性が増強し2-AGの前駆体であるDG産生が促進される。結果、2-AGが効率よく作られ、現象として、DSIが起きやすくなるように見える(Hashimotodani et al., 2005; Maejima et al., 2005)
グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体のアゴニスト存在下でニューロンを脱分極させると、一見、DSI(あるいはDSE)が促進される<ref name=ref6 />。すなわち弱い脱分極でも現象として、大きなDSIを引き起こすことができる。この現象のメカニズムとして、以下のことが明らかになっている。グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体はPLCβを活性化する。PLCβがカルシウム感受性を持つため、受容体活性化に加えて脱分極による細胞内カルシウム流入が生じると、PLCβ活性が増強し2-AGの前駆体であるDG産生が促進される。結果、2-AGが効率よく作られ、現象として、DSIが起きやすくなるように見える<ref name=ref9><pubmed> 15664177 </pubmed></ref><ref name=ref10><pubmed> 16033892 </pubmed></ref>
上記の「DSIの促進」という表現は、分子機構を考慮に入れると、正しい表現ではない。神経細胞の強い脱分極だけで生ずるDSI/DSEは、PLCβを欠損するマウスでも全く影響されないことが分かっており(Hashimotodani et al., 2005; Maejima et al., 2005)、PLCβ以外のPLCか、または別の分子を介するものと考えられている。厳密には、「DSIの促進」ではなく「Gq/11共役型受容体活性化による2-AGを介する逆行性シナプス伝達抑圧の、細胞内カルシウム上昇による促進」である。多くの論文において、このような重要な点を無視し、安易に「DSIの促進」という表現が使われているので、注意が必要である。
上記の「DSIの促進」という表現は、分子機構を考慮に入れると、正しい表現ではない。神経細胞の強い脱分極だけで生ずるDSI/DSEは、PLCβを欠損するマウスでも全く影響されないことが分かっており<ref name=ref9 /><ref name=ref10 />、PLCβ以外のPLCか、または別の分子を介するものと考えられている。厳密には、「DSIの促進」ではなく「Gq/11共役型受容体活性化による2-AGを介する逆行性シナプス伝達抑圧の、細胞内カルシウム上昇による促進」である。多くの論文において、このような重要な点を無視し、安易に「DSIの促進」という表現が使われているので、注意が必要である。
分子メカニズムは異なるとはいえ、現象としての「DSIの促進」は機能的に重要な役割を担っていると考えられる。例えば、線条体ではアセチルコリン作動性抑制性ニューロンの発火によって恒常的に細胞外にアセチルコリンが存在する。そのため中型有棘神経細胞のシナプスではM1ムスカリン受容体が慢性的に活性化されており弱い脱分極でもDSIが引き起こされる(Narushima et al., 2007)
分子メカニズムは異なるとはいえ、現象としての「DSIの促進」は機能的に重要な役割を担っていると考えられる。例えば、線条体ではアセチルコリン作動性抑制性ニューロンの発火によって恒常的に細胞外にアセチルコリンが存在する。そのため中型有棘神経細胞のシナプスではM1ムスカリン受容体が慢性的に活性化されており弱い脱分極でもDSIが引き起こされる<ref><pubmed> 17234582 </pubmed></ref>


==DSIの伝播==
==DSIの伝播==
エンドカンナビノイドの細胞外での拡散範囲は非常に限られている。したがって、DSIは脱分極した細胞のごく近傍の細胞にしか及ばない。例えば海馬CA1錐体細胞のDSIでは脱分極した細胞からの距離が20 μm以内であれば脱分極していない細胞でもDSIが起こる<ref name=ref5 />。
エンドカンナビノイドの細胞外での拡散範囲は非常に限られている。したがって、DSIは脱分極した細胞のごく近傍の細胞にしか及ばない。例えば海馬CA1錐体細胞のDSIでは脱分極した細胞からの距離が20 μm以内であれば脱分極していない細胞でもDSIが起こる<ref name=ref5 />。
  小脳では間接的なメカニズムによって遠くまでDSIの伝播が起こりうる。脱分極によってプルキンエ細胞から放出されたエンドカンナビノイドが、近傍の抑制性ニューロンのCB1受容体を活性化する。内向き整流性カリウムチャネルがCB1受容体の下流にあり、このカリウムチャネルの活性化によって抑制性ニューロンの発火が抑えられる。その結果、発火が抑えられた抑制性ニューロンが投射している多くのプルキンエ細胞において入力が抑制される(Kreitzer et al., 2002)
  小脳では間接的なメカニズムによって遠くまでDSIの伝播が起こりうる。脱分極によってプルキンエ細胞から放出されたエンドカンナビノイドが、近傍の抑制性ニューロンのCB1受容体を活性化する。内向き整流性カリウムチャネルがCB1受容体の下流にあり、このカリウムチャネルの活性化によって抑制性ニューロンの発火が抑えられる。その結果、発火が抑えられた抑制性ニューロンが投射している多くのプルキンエ細胞において入力が抑制される<ref><pubmed> 12062024 </pubmed></ref>


==生理的役割==
==生理的役割==
DSI/DSEはネガティブフィードバックとして働き局所回路においてシナプス伝達を制御すると考えられる。短期のシナプス可塑性であるDSIは神経回路の計算論的観点からも注目されている(Abbott and Regehr, 2004)。またDSIがメタ可塑性に関わることが示唆されている。海馬CA1において閾値以下のテタヌス刺激では長期増強(LTP)を引き起こさないような場合でもテタヌス刺激に先行してDSIを誘導させると次に来る閾値以下であった刺激でもLTPが誘導されることが報告されている(Carlson et al., 2002)。DSIによる脱抑制が原因であると考えられる。
DSI/DSEはネガティブフィードバックとして働き局所回路においてシナプス伝達を制御すると考えられる。短期のシナプス可塑性であるDSIは神経回路の計算論的観点からも注目されている<ref><pubmed> 15483601 </pubmed></ref>。またDSIがメタ可塑性に関わることが示唆されている。海馬CA1において閾値以下のテタヌス刺激では長期増強(LTP)を引き起こさないような場合でもテタヌス刺激に先行してDSIを誘導させると次に来る閾値以下であった刺激でもLTPが誘導されることが報告されている<ref><pubmed> 12080342 </pubmed></ref>。DSIによる脱抑制が原因であると考えられる。
    DSIおよびDSEを誘導するには細胞内のカルシウム濃度がマイクロモーラーレベルにまで達しなければならない。実際に生理的条件下でそのように大きなカルシウム濃度上昇を引き起こすほどニューロンが長時間脱分極するかどうかは疑わしい。したがってDSIが生理的な現象であることを疑問視する報告もある(Hampson et al., 2003)。しかし一方で、小脳プルキンエ細胞や背側蝸牛神経核にあるCartwheel細胞の持続的な発火によるマイクロモーラー以下のカルシウム濃度上昇でもDSIまたはDSEが起こることからDSI/DSEが生理的現象である可能性も示唆されている(Brenowitz et al., 2006; Sedlacek et al., 2011)。エンドカンナビノイドはDSIのような細胞内カルシウム濃度上昇だけでなく、グループI代謝型グルタミン酸受容体といったGq/11タンパク質共役型受容体の活性化によっても産生・放出される(Maejima et al., 2001)。さらに前述のいわゆる「DSIの促進効果」により弱い脱分極でもGq/11タンパク質共役型受容体の活性化と組合わさると、効率よく逆行性シナプス伝達抑制が引き起こされる。したがって生理的条件下ではDSIが単独で起こるよりもGq/11タンパク質共役型受容体の活性化を伴った神経活動によってエンドカンナビノイドによる逆行性シナプス伝達抑制が引き起こされると考えられる(Hashimotodani et al., 2007a)。生理的役割とは別にDSI/DSEは着目するシナプスにおいて、エンドカンナビノイドによる逆行性シナプス伝達抑制を誘導する能力(シナプス後部にDGLが存在し、シナプス前終末にCB1受容体が存在する)があるかどうかを試すプロトコールとしても用いられる。
    DSIおよびDSEを誘導するには細胞内のカルシウム濃度がマイクロモーラーレベルにまで達しなければならない。実際に生理的条件下でそのように大きなカルシウム濃度上昇を引き起こすほどニューロンが長時間脱分極するかどうかは疑わしい。したがってDSIが生理的な現象であることを疑問視する報告もある<ref><pubmed> 12649318 </pubmed></ref>。しかし一方で、小脳プルキンエ細胞や背側蝸牛神経核にあるCartwheel細胞の持続的な発火によるマイクロモーラー以下のカルシウム濃度上昇でもDSIまたはDSEが起こることからDSI/DSEが生理的現象である可能性も示唆されている<ref><pubmed> 16793891 </pubmed></ref><ref><pubmed> 22049424 </pubmed></ref>。エンドカンナビノイドはDSIのような細胞内カルシウム濃度上昇だけでなく、グループI代謝型グルタミン酸受容体といったGq/11タンパク質共役型受容体の活性化によっても産生・放出される(Maejima et al., 2001)。さらに前述のいわゆる「DSIの促進効果」により弱い脱分極でもGq/11タンパク質共役型受容体の活性化と組合わさると、効率よく逆行性シナプス伝達抑制が引き起こされる。したがって生理的条件下ではDSIが単独で起こるよりもGq/11タンパク質共役型受容体の活性化を伴った神経活動によってエンドカンナビノイドによる逆行性シナプス伝達抑制が引き起こされると考えられる(Hashimotodani et al., 2007a)。生理的役割とは別にDSI/DSEは着目するシナプスにおいて、エンドカンナビノイドによる逆行性シナプス伝達抑制を誘導する能力(シナプス後部にDGLが存在し、シナプス前終末にCB1受容体が存在する)があるかどうかを試すプロトコールとしても用いられる。


==参考文献==
==参考文献==
<references/>
<references/>
(執筆者:橋本谷祐輝、狩野方伸 担当編集委員:柚崎通介)
(執筆者:橋本谷祐輝、狩野方伸 担当編集委員:柚崎通介)
49

回編集

案内メニュー