16,040
回編集
細 (→小脳皮質によるタイミング学習の理論 ) |
|||
33行目: | 33行目: | ||
[[Image:Yamazaki Nagao 図3.jpg|thumb|250px|<b>図3. 遅延型瞬目反射の条件付けに関わる小脳回路</b><br />(A)は全体、(B)では小脳皮質のみの回路を示す。]] [[Image:Yamazaki Nagao 図4.jpg|thumb|250px|<b>図4. CSの時系列を表現する顆粒細胞集団の活動の理論モデル</b><br /> (A) ゴルジ細胞―顆粒細胞フィードバック回路によるランダムネットワークモデル。(B) シミュレーションされた顆粒細胞集団によるCSの時系列のコーデイング。(C) 遅延型瞬目反射の条件付けの計算機シミュレーション。トレーニング中のトライアル1,18,19でのプルキンエ細胞(上)と小脳核(下)の膜電位のプロット。USが500ミリ秒で呈示されるとすると、プルキンエ細胞はその前後でスパイク発射を停止し、その結果脱抑制された小脳核がバースト的にスパイクを発射する。]] | [[Image:Yamazaki Nagao 図3.jpg|thumb|250px|<b>図3. 遅延型瞬目反射の条件付けに関わる小脳回路</b><br />(A)は全体、(B)では小脳皮質のみの回路を示す。]] [[Image:Yamazaki Nagao 図4.jpg|thumb|250px|<b>図4. CSの時系列を表現する顆粒細胞集団の活動の理論モデル</b><br /> (A) ゴルジ細胞―顆粒細胞フィードバック回路によるランダムネットワークモデル。(B) シミュレーションされた顆粒細胞集団によるCSの時系列のコーデイング。(C) 遅延型瞬目反射の条件付けの計算機シミュレーション。トレーニング中のトライアル1,18,19でのプルキンエ細胞(上)と小脳核(下)の膜電位のプロット。USが500ミリ秒で呈示されるとすると、プルキンエ細胞はその前後でスパイク発射を停止し、その結果脱抑制された小脳核がバースト的にスパイクを発射する。]] | ||
小脳のタイミング制御機構については、[[遅延型瞬目反射]]の条件付けの実験をもとに、理論モデルが提案されている。 | |||
図3Aに、条件付けに関係する小脳皮質と小脳核の神経回路を示す。小脳の出力細胞であるプルキンエ細胞には、苔状線維の入力を受けた顆粒細胞の[[軸索]]突起である平行線維を介して、CSの時系列を反映する情報が伝えられる。CSが呈示されると、小脳核は興奮性入力とプルキンエ細胞を介する抑制性入力をともに受けるので強く興奮できず、その結果CRは生じない。USの信号は登上線維によってプルキンエ細胞に伝えられているので、CSとUSを同時に提示することを繰り返すと平行線維―プルキンエ細胞間シナプスに長期抑圧がおこり、USが生じる時に活性化する平行線維とプルキンエ細胞間のシナプスの伝達効率は低下する。その結果、小脳核はCSに対して強く興奮するようになり、CRが生じるようになる。 | |||
このように長期抑圧が遅延型瞬目反射の条件付けの原因であると仮定すると、CS呈示開始からUSまでの時間経過の情報が、平行線維―プルキンエ細胞間シナプス入力という空間情報に変換されることが必要となる。もしCSが呈示されている間、異なる顆粒細胞集団が時系列的に順番に活動するものとすれば(図3B)、USが生じた時点で活動している顆粒細胞の平行線維が形成するシナプスのみが長期抑圧によって減弱されるが、他の顆粒細胞集団が形成する平行線維のシナプスは影響を受けないことになる(図3B)。しかしながら、顆粒細胞は小脳皮質の他の神経細胞に比べ小さくかつ数が極めて多いので、無麻酔覚醒の動物を対象にした[[微小電極]]による細胞レベルの解析は技術的に困難であり、顆粒細胞の集団の活動がCSの時系列を反映しているかどうかについては、実験的に検証されていない。 | このように長期抑圧が遅延型瞬目反射の条件付けの原因であると仮定すると、CS呈示開始からUSまでの時間経過の情報が、平行線維―プルキンエ細胞間シナプス入力という空間情報に変換されることが必要となる。もしCSが呈示されている間、異なる顆粒細胞集団が時系列的に順番に活動するものとすれば(図3B)、USが生じた時点で活動している顆粒細胞の平行線維が形成するシナプスのみが長期抑圧によって減弱されるが、他の顆粒細胞集団が形成する平行線維のシナプスは影響を受けないことになる(図3B)。しかしながら、顆粒細胞は小脳皮質の他の神経細胞に比べ小さくかつ数が極めて多いので、無麻酔覚醒の動物を対象にした[[微小電極]]による細胞レベルの解析は技術的に困難であり、顆粒細胞の集団の活動がCSの時系列を反映しているかどうかについては、実験的に検証されていない。 | ||
顆粒細胞の集団がCSの時系列をコードする可能性については、理論モデルを用いたシミュレーションによる研究がなされている<ref name="ref10"><pubmed>19495900</pubmed></ref> | 顆粒細胞の集団がCSの時系列をコードする可能性については、理論モデルを用いたシミュレーションによる研究がなされている<ref name="ref10"><pubmed>19495900</pubmed></ref>。図4はその代表例である。顆粒細胞層は顆粒細胞とゴルジ細胞からなり、顆粒細胞は[[ゴルジ細胞]]を興奮させゴルジ細胞は顆粒細胞を抑制する。即ちこの2種類の神経細胞からなる神経回路は抑制性フィードバック回路を形成する(図4A)。ここで、ゴルジ細胞-顆粒細胞間の結合が空間的にランダムだと仮定すると、時間的に定常的な入力に対して、各顆粒細胞はそれぞれ異なる時間パターンで間欠的にスパイクの発射活動と停止を繰り返すことが可能である(図4B)。つまり集団として見ると、ある特定の時刻で活動する顆粒細胞の集団は一意に定まり、かつ活動する顆粒細胞集団は時間経過とともに徐々に変化することになる。従って、活動する顆粒細胞集団が遷移することによって、CS呈示開始からの時系列を表現することが可能になる。この様な考え方に基づいて、遅延型瞬目反射の条件付けを計算機シミュレーションにより再現することが可能である(図4C,<ref name="ref10"><pubmed>19495900</pubmed></ref>)。今後このようなモデルに対する実験的検証が望まれる。小脳プラットフォーム<ref>http://cerebellum.neuroinf.jp/</ref>にはこのモデルを含めた様々なモデルが登録されているので、参照されたい。 | ||
== 小脳によるタイミング制御の特徴 == | == 小脳によるタイミング制御の特徴 == |