197
回編集
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
Hirokitanaka (トーク | 投稿記録) 細編集の要約なし |
||
7行目: | 7行目: | ||
== 両眼視差 == | == 両眼視差 == | ||
[[Image:BinocularDisparity.png|thumb| | [[Image:BinocularDisparity.png|thumb|460px|<b>図1 両眼視差</b> 両眼視差. A,2つの眼で黒丸を注視するとき、さまざまな奥行きにある刺激の網膜投影像。B, 左右の網膜を平にして、上下に並べたもの。注視している黒丸の像は、網膜で視力の最も高い場所である中心窩に投影される。注視している点(注視点という)と同じ奥行きにある刺激(青)の左右の像は、中心窩を基準とした網膜座標上の同じ位置に投影され、その両眼視差はゼロとなる。一方、注視点と異なる奥行き面上にある刺激(赤、緑)は、左右網膜の異なる位置に投影され、ゼロ以外の両眼視差をもつ。手前にある刺激(緑)と、奥にある刺激(赤)の両眼視差の方向は逆になり、前者を交差視差、後者を非交差視差とよんでいる。]] | ||
われわれが両眼でものをみるとき、2つの眼が注視している点(注視点)と同じ奥行きにある刺激は、左右の網膜上の同じ位置に投影される(=いずれの網膜においても、網膜の中心である中心窩から同じ方向、量だけ離れた位置に投影される)のにたいし、注視点と異なる奥行きにある刺激は水平方向にずれた位置に投影される(図1参照)。この網膜像の位置のずれのことを両眼視差という(単に視差ともいう)。両眼視差の量は刺激と注視点の奥行き距離に比例する。また刺激が注視点より手前にある場合と、奥にある場合とで両眼視差の方向(符号)は逆になる。慣習上、前者にはマイナス、後者にはプラスの符号をつけ、前者を交差視差 、後者を非交差視差とよぶ。<br> | |||
われわれが両眼視差のみを手がかりにして奥行きを知覚できることは1838年にWheatstoneがステレオグラムを考案して証明している。 | われわれが両眼視差のみを手がかりにして奥行きを知覚できることは1838年にWheatstoneがステレオグラムを考案して証明している。 | ||
<br> | <br> | ||
21行目: | 21行目: | ||
== 単純型細胞の受容野構造と両眼視差選択性 == | == 単純型細胞の受容野構造と両眼視差選択性 == | ||
[[Image:BinocularSimple.png|thumb| | [[Image:BinocularSimple.png|thumb|475px|<b>図2 単純型細胞の受容野構造と両眼視差選択性</b> A. 単純型細胞の両眼受容野構造. 左右の受容野はx-y2次元構造とx-方向の1次元断面図を示している。Sは細胞体、下の四角は半波整流機構を表す。B-D. 単純型細胞の視差選択性。上の四角は、刺激(明るいスポットとする)の左右網膜像を表し、すぐ下の受容野をもつ細胞にとって最適な両眼視差をとる場合の位置関係を表す。B. ゼロ視差を最適とする受容野構造. C. 位置モデルによる非交差視差選択性。D. 位相モデルによる非交差視差選択性。<br />]] 単純型細胞細胞は、明るい刺激に応答するON領域と暗い刺激に応答するOFF領域が分離した受容野をもつ。受容野の空間構造はガボール関数で近似できる。 | ||
多くの単純型細胞は両眼に受容野をもつ。これら両眼性単純型細胞の応答は、両眼からの入力を左右の受容野で重みづけをして足し合わせたのち、さらに半波整流をしたものとして表すことができる(図2A)。 | 多くの単純型細胞は両眼に受容野をもつ。これら両眼性単純型細胞の応答は、両眼からの入力を左右の受容野で重みづけをして足し合わせたのち、さらに半波整流をしたものとして表すことができる(図2A)。 | ||
59行目: | 59行目: | ||
=== 2次特徴の両眼視差 === | === 2次特徴の両眼視差 === | ||
視覚系が利用可能な両眼視差のうち、最も強い奥行き手がかりとなるものは輝度エッジから生じる両眼視差である。しかし、テクスチャーエッジ(例 : 縦縞模様の領域と横縞模様の領域の境界)など2次特徴とよばれる刺激により生じる両眼視差からも奥行き知覚は可能である。視覚野の細胞の多くは輝度エッジの両眼視差にしか応答しない。しかしながら、ネコ18野(細胞構築学的にはV2野とされる)の1部の細胞は、2次特徴の両眼視差に選択性をもつことが示されている。このような細胞は、輝度のエッジにも同じ両眼視差に最大応答し、特徴手がかりに依存しない両眼視差選択性を示す。2次特徴の両眼視差は、両眼視差エネルギーモデルの各サブユニットの左右受容野を、線形フィルターではなく『”フィルター>整流>フィルター』というカスケード型の非線形機構で置き換えることで検出できる。<br><ref name="ref16"><pubmed> 16624957 </pubmed></ref>。<br> | 視覚系が利用可能な両眼視差のうち、最も強い奥行き手がかりとなるものは輝度エッジから生じる両眼視差である。しかし、テクスチャーエッジ(例 : 縦縞模様の領域と横縞模様の領域の境界)など2次特徴とよばれる刺激により生じる両眼視差からも奥行き知覚は可能である。視覚野の細胞の多くは輝度エッジの両眼視差にしか応答しない。しかしながら、ネコ18野(細胞構築学的にはV2野とされる)の1部の細胞は、2次特徴の両眼視差に選択性をもつことが示されている。このような細胞は、輝度のエッジにも同じ両眼視差に最大応答し、特徴手がかりに依存しない両眼視差選択性を示す。2次特徴の両眼視差は、両眼視差エネルギーモデルの各サブユニットの左右受容野を、線形フィルターではなく『”フィルター>整流>フィルター』というカスケード型の非線形機構で置き換えることで検出できる。<br><ref name="ref16"><pubmed> 16624957 </pubmed></ref>。<br> | ||
<br> | <br> |
回編集