「カドヘリン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
10行目: 10行目:
== 神経管形成におけるカドヘリンの役割  ==
== 神経管形成におけるカドヘリンの役割  ==


 神経系は外胚葉由来であり、外胚葉が陥没した管(神経管)から脳・脊髄が形成される。外胚葉における上皮の頂端(apical)側が神経管の内腔側になり、神経管の内腔は脳室となる。神経管の形成に伴い、E-カドヘリンの発現が消失し、N-カドヘリンに置き換わることが知られている。神経管の形成には、N-カドヘリンとプロトカドヘリン19が協調的に働くことが必要であることが、ゼブラフィッシュで示されている<ref><pubmed> 21115806 </pubmed></ref>。  
 神経系は外胚葉由来であり、外胚葉が陥没した管(神経管)から脳・脊髄が形成される。外胚葉における上皮の頂端(apical)側が神経管の内腔側になり、神経管の内腔は脳室となる。神経管の形成に伴い、E-カドヘリンの発現が消失し、N-カドヘリンに置き換わることが知られている。神経管の形成には、N-カドヘリンとプロトカドヘリン19が協調的に働くことが必要であることが、ゼブラフィッシュを用いた実験系で示されている<ref><pubmed> 21115806 </pubmed></ref>。  


== 神経前駆細胞におけるカドヘリンの役割  ==
== 神経前駆細胞におけるカドヘリンの役割  ==
20行目: 20行目:
== 神経細胞移動におけるカドヘリンの役割  ==
== 神経細胞移動におけるカドヘリンの役割  ==


[[Image:Cad Fig2.jpg|thumb|right|400px|図2  大脳皮質形成におけるカドヘリンの役割<br />カドヘリンは脳の様々な領域で機能しているが、図にはひとつの例として発生期の大脳皮質におけるカドヘリン(主にN-カドヘリン)の役割を示した。N-カドヘリンは、神経前駆細胞同士の接着を制御することにより、脳室帯の構造を維持している。さらに、N-カドヘリンは神経細胞が放射状突起(神経前駆細胞由来の長い突起)に接着するためにも必要であり、ロコモーション移動(放射状突起に沿った移動)を含む神経細胞移動に重要な役割を果たす。移動中の神経細胞は、後方(脳室側:図の下側)に軸索を伸長するが、様々な脳の領域において軸索伸長にもカドヘリンが必要である(本文参照)。また、移動を終了した細胞は樹状突起を成熟させ、別の神経細胞の軸索との間にシナプスを形成するが、カドヘリンはシナプスの形成、維持、さらにシナプス可塑性(長期増強など)においても重要な役割を果たす。]] 脳室近辺で誕生した神経細胞は、脳室側から最終配置部位までの長い距離を移動することにより、脳の層構造や神経核が形成される。例えば、ほ乳類の大脳皮質は特徴的な6層構造を示すが、これは脳室帯もしくは脳室下帯で誕生した神経細胞が、複雑な形態変化を伴う多段階の移動を行うことによって構築される<ref><pubmed> 18075253 </pubmed></ref>(図2)。  
[[Image:Cad Fig2.jpg|thumb|right|400px|図2  大脳皮質形成におけるカドヘリンの役割<br />カドヘリンは脳の様々な領域で機能しているが、図にはひとつの例として発生期の大脳皮質におけるカドヘリン(主にN-カドヘリン)の役割を示した。N-カドヘリンは、神経前駆細胞同士の接着を制御することにより、脳室帯の構造を維持している。さらに、N-カドヘリンは神経細胞が放射状突起(神経前駆細胞由来の長い突起)に接着するためにも必要であり、ロコモーション移動(放射状突起に沿った移動)を含む神経細胞移動に重要な役割を果たす。移動中の神経細胞は、後方(脳室側:図の下側)に軸索を伸長するが、様々な脳の領域において軸索伸長にもカドヘリンが必要である(本文参照)。また、移動を終了した細胞は樹状突起を成熟させ、別の神経細胞の軸索との間にシナプスを形成するが、カドヘリンはシナプスの形成、維持、さらにシナプス可塑性(長期増強など)においても重要な役割を果たす。]] 脳室近辺で誕生した神経細胞は、脳室側から最終配置部位までの長い距離を移動することにより、脳の層構造や神経核が形成される。例えば、ほ乳類の大脳皮質は特徴的な6層構造を示すが、これは、脳室帯もしくは脳室下帯で誕生した神経細胞が、複雑な形態変化を伴う多段階の移動を行うことによって構築される<ref><pubmed> 18075253 </pubmed></ref>(図2)。  


 神経細胞移動は、神経成熟を伴う多段階の移動であることが知られているが、移動過程の大部分は、神経前駆細胞由来の長い突起(放射状突起)に沿って移動する「ロコモーション様式」である(図2)。ロコモーション様式で移動する神経細胞は、N-カドヘリン依存的に放射状突起に接着する。さらに、一部のN-カドヘリンがRabファミリー低分子量Gタンパク質依存的に神経細胞内に取り込まれ、再び細胞膜へとリサイクルされることにより、ちょうどN-カドヘリンという「足」を引っ込めて、前へと踏み出すようにして、神経細胞は放射状突起の上を「歩いて」いると考えられている<ref><pubmed> 20797536 </pubmed></ref>(図2)。ロコモーション様式以外の移動様式においても、N-カドヘリンが関与しているという報告があるが<ref><pubmed> 21315259 </pubmed></ref><ref><pubmed> 21516100 </pubmed></ref>、そのメカニズムについては今後の課題である。
 発生期大脳皮質における神経細胞移動は多段階であることが知られているが、その大部分は、神経前駆細胞由来の長い突起(放射状突起)に沿って移動する「ロコモーション様式」である(図2)。ロコモーション様式で移動する神経細胞は、N-カドヘリン依存的に放射状突起に接着する。さらに、一部のN-カドヘリンがRabファミリー低分子量Gタンパク質依存的に神経細胞内に取り込まれ、再び細胞膜へとリサイクルされることにより、ちょうどN-カドヘリンという「足」を引っ込めて、再びそれを前へと踏み出すようにして、神経細胞は放射状突起の上を「歩いて」いると考えられている<ref><pubmed> 20797536 </pubmed></ref>(図2)。また、ロコモーション様式以外の移動様式においてもN-カドヘリンが関与していることが報告されているが<ref><pubmed> 21315259 </pubmed></ref><ref><pubmed> 21516100 </pubmed></ref>、その下流のメカニズムについては今後の課題である。


 大脳皮質以外の領域においても、菱脳唇(rhombic lip)由来の小脳顆粒細胞の移動にはN-カドヘリンが必要であることが、ゼブラフィッシュを用いた実験系で示されている<ref><pubmed> 19901980 </pubmed></ref>。また、マウスにおいて、下菱脳唇(lower rhombic lip)から外側網様体核(lateral reticular nucleus: LRN)および副楔状束核(external cuneate nucleus: ECN)へ向かう神経細胞は、N-カドヘリンとカドヘリン11依存的に移動することが示されている<ref><pubmed> 16611692 </pubmed></ref>。 すなわち、カドヘリンは脳の層構造形成のみならず、神経核の形成も制御している。
 大脳皮質以外の領域においても、菱脳唇(rhombic lip)由来の小脳顆粒細胞の移動にN-カドヘリンが必要であることが、ゼブラフィッシュを用いた実験系で示されている<ref><pubmed> 19901980 </pubmed></ref>。また、マウスにおいて、下菱脳唇(lower rhombic lip)から外側網様体核(lateral reticular nucleus: LRN)および副楔状束核(external cuneate nucleus: ECN)へ向かう神経細胞は、N-カドヘリンとカドヘリン11依存的に移動することが報告されている<ref><pubmed> 16611692 </pubmed></ref>。すなわち、カドヘリンは層構造のみならず神経核の形成にも関与していると考えられる。


== 神経突起伸長におけるカドヘリンの役割  ==
== 神経突起伸長におけるカドヘリンの役割  ==


 神経細胞は、最終配置部位への移動中もしくは移動終了後に軸索や樹状突起を伸長し、神経回路網を形成する。軸索が正しく伸長するためには、N-カドヘリンが必要であることが、ゼブラフィッシュの網膜などで示されている<ref><pubmed> 12702661 </pubmed></ref>。また、ラットの海馬由来の初代培養神経細胞を用いた実験系により、N-カドヘリン依存性の細胞接着を支点としてアクチン細胞骨格が動く(actin flow)ことにより、突起が伸長するというモデルが提唱されている<ref><pubmed> 18524892 </pubmed></ref>(図2)。  
 神経細胞は、最終配置部位への移動中もしくは移動終了後に軸索や樹状突起を伸長し、神経回路網を形成する。軸索が正しく伸長するためにはN-カドヘリンが必要であることが、ゼブラフィッシュの網膜などで示されている<ref><pubmed> 12702661 </pubmed></ref>。また、ラットの海馬由来の初代培養神経細胞を用いた実験系により、N-カドヘリン依存性の細胞接着を支点としてアクチン細胞骨格が動く(actin flow)ことにより、神経突起が伸長するというモデルが提唱されている<ref><pubmed> 18524892 </pubmed></ref>(図2)。  


 N-カドヘリンと同じくタイプIクラッシックカドヘリンに属するR-カドヘリン(CDH4)や、非クラッシックカドヘリンのひとつOL-プロトカドヘリン(プロトカドヘリン10)などが軸索の伸長に関与することが知られている<ref><pubmed> 14586016 </pubmed></ref>。OL-プロトカドヘリンは線条体の神経細胞の軸索に発現し、その伸長を制御する。この線条体から伸びる軸索は、大脳皮質から視床や脊髄へ投射する軸索や、反対に視床から大脳皮質へと投射する軸索が正常に伸長するために必要であり、OL-プロトカドヘリンの遺伝子破壊マウスでは、これらすべての軸索伸長が異常となる<ref><pubmed> 17721516 </pubmed></ref>
 N-カドヘリンと同じくタイプI-クラッシックカドヘリンに属するR-カドヘリン(CDH4)や、非クラッシックカドヘリンのひとつOL-プロトカドヘリン(プロトカドヘリン10)などが軸索の伸長に関与することが知られている<ref><pubmed> 14586016 </pubmed></ref><ref><pubmed> 17721516 </pubmed></ref>。OL-プロトカドヘリンは線条体の神経細胞の軸索に発現し、その伸長を制御する。この線条体から伸びる軸索は、大脳皮質から視床や脊髄へ投射する軸索や、反対に視床から大脳皮質へと投射する軸索が正常に伸長するために必要であり、OL-プロトカドヘリンの遺伝子破壊マウスでは、これらすべての軸索伸長が異常となる。


 情報の受け手側となる樹状突起の形態形成においても、カドヘリンが関与する。同一細胞から伸びる樹状突起は、互いに反発し合うことにより、重なることなく突起を広げることが知られているが(これをself-avoidanceと呼ぶ)、プロトカドヘリンγの遺伝子クラスター(マウスでは22個の遺伝子が含まれる)を欠失させると、網膜のコリン作動性アマクリン細胞(Retinal starburst amacrine cell)などにおいてself-avoidanceが異常となり、本来は互いに反発して広がるはず樹状突起が接着して重なり合ってしまう<ref><pubmed> 22842903 </pubmed></ref>
 視床は、脳の様々な領域からの入力を受け、その情報を大脳皮質へと伝える領域である。例えば、視床は、網膜神経節細胞(Retinal ganglion cell: RGC)からの入力を受けている。このRGCの軸索とその投射先の神経細胞は、どちらもカドヘリン6を発現しており、カドヘリン6の遺伝子破壊マウスでは、RGCから視床への投射が異常となる<ref><pubmed> 21867880 </pubmed></ref>。このように、神経細胞が特定の脳領域へと投射するための分子基盤は、少なくとも一部はカドヘリンのホモフィリックな接着で説明ができる。神経細胞の投射先の選別がカドヘリンの種類によって決められているという仮説を、カドヘリン・コード(もしくはカドヘリン接着コード)仮説と呼ぶ。


 視床は、脳の様々な領域からの入力を受け、その情報を大脳皮質へと伝える領域である。例えば、視床は、網膜神経節細胞(Retinal ganglion cell: RGC)からの入力を受けている。このRGCの軸索と投射先の神経細胞は、どちらもカドヘリン6を発現しており、カドヘリン6の遺伝子破壊マウスでは、RGCから視床への投射が異常となる<ref><pubmed> 21867880 </pubmed></ref>。このように、神経細胞が特定の脳領域へと投射するための分子基盤は、少なくとも一部はカドヘリンのホモフィリックな接着で説明ができる。このように、神経細胞の投射先の選別がカドヘリンの種類によって決められているという仮説を、カドヘリン・コード(もしくはカドヘリン接着コード)仮説と呼ぶ。
 視床へ集まった情報は、視床から大脳皮質へと投射する軸索(Thalamocortical axon:視床皮質軸索)によって、大脳皮質の4層へと伝えられる。大脳皮質と視床のスライス組織を共培養することにより、視床皮質軸索の伸長を再現できるが、ここでN-カドヘリンの機能を阻害すると、視床皮質軸索は4層で止まることができなくなり、さらに表層まで伸長し続ける<ref><pubmed> 12657688 </pubmed></ref>。すなわち、N-カドヘリンは軸索が正しい領域に投射するためにも必要である。


 視床へ集まった情報は大脳皮質へと伝えられるが、視床からの入力は、大脳皮質の4層で受け取られる。視床から大脳皮質4層へと投射する軸索(Thalamocortical axon)は、N-カドヘリンの機能を阻害すると、4層で止まることができなくなり、さらに表層まで伸長し続ける<ref><pubmed> 12657688 </pubmed></ref>。すなわち、N-カドヘリンは軸索が正しい領域に投射するためにも必要である。
 情報の受け手側となる樹状突起の形態形成においても、カドヘリンが関与する。小脳のプルキンエ細胞や網膜のアマクリン細胞などにおいて、同一細胞から伸びる樹状突起は、互いに反発し合うことにより、重なることなく突起を広げることが知られているが(これをself-avoidanceと呼ぶ)、プロトカドヘリンγの遺伝子クラスター(マウスでは22個の遺伝子が含まれる)を欠失させると、網膜のコリン作動性アマクリン細胞(Retinal starburst amacrine cell)などにおいてself-avoidanceが異常となり、本来は互いに反発して広がるはず樹状突起が接着して重なり合ってしまう<ref><pubmed> 22842903 </pubmed></ref>


== シナプス形成と高次機能におけるカドヘリンの役割 ==
== シナプス形成と高次脳機能におけるカドヘリンの役割 ==


 神経細胞の興奮は、軸索末端からシナプスを介して次の細胞の樹状突起へと伝達される。情報が出力される側(軸索側)の細胞をシナプス前細胞、入力側(樹状突起側)をシナプス後細胞と呼ぶ。シナプスは、樹状突起上に形成された短い膜突出(フィロポディア)が成熟してマッシュルーム型となり(これをスパインと呼ぶ)、このスパインに軸索が投射することにより形成される。シナプス前細胞においてシナプス小胞が放出される領域はアクティブ・ゾーンと呼ばれ、シナプス後細胞において神経伝達物質の受容体やその裏打ちタンパク質が濃縮する部位をシナプス後肥厚(post-synaptic density)と呼ぶが、カドヘリンはこれらの構造にも観察されるが、その辺縁部に強く局在する<ref><pubmed> 8909549 </pubmed></ref>。カドヘリンの活性は、スパインの形成や神経活動依存的なスパインの肥大化に必要であることが示されている<ref><pubmed> 12123610 </pubmed></ref><ref><pubmed> 15569714 </pubmed></ref>(図2)。  
 神経細胞の興奮は、軸索末端からシナプスを介して、情報の受け手側の神経細胞の樹状突起へと伝達される。情報が出力される側(軸索側)の細胞をシナプス前細胞、入力側(樹状突起側)をシナプス後細胞と呼ぶ。興奮性シナプスは、樹状突起上に形成された短い膜突出(フィロポディア)が成熟してマッシュルーム型となり(これをスパインと呼ぶ)、このスパインに軸索が投射することにより形成される。シナプス前細胞においてシナプス小胞が放出される領域はアクティブ・ゾーン、シナプス後細胞において神経伝達物質の受容体やその裏打ちタンパク質が濃縮する部位はシナプス後肥厚(post-synaptic density)と呼ばれ、カドヘリンはこれらの構造にも観察されるが、むしろその辺縁部に強く局在する<ref><pubmed> 8909549 </pubmed></ref>。カドヘリンの活性は、スパインの形成や神経活動依存的なスパインの肥大化に必要であることが示されている<ref><pubmed> 12123610 </pubmed></ref><ref><pubmed> 15569714 </pubmed></ref>(図2)。  


 海馬CA3領域の神経細胞(CA3錐体細胞)は、その樹状突起の近位部にて、歯状回の顆粒細胞の軸索(苔状線維)からの入力を受ける。CA3錐体細胞の樹状突起近位部には、N-カドヘリンが局在する。このN-カドヘリンの局在は、ネクチンという免疫グロブリンスーパーファミリーに属する細胞-細胞間接着分子によって決められている<ref><pubmed> 11827984 </pubmed></ref>。(ネクチンがカドヘリンを細胞接着部位にリクルートすることは、上皮細胞のアドへレンス・ジャンクションなどでも観察されていることから、組織を問わず一般的な現象であると考えられる。)  
 海馬CA3領域の神経細胞(CA3錐体細胞)は、その樹状突起の近位部にて、歯状回の顆粒細胞の軸索(苔状線維)からの入力を受ける。CA3錐体細胞の樹状突起近位部には、N-カドヘリンが局在する。このN-カドヘリンの局在は、ネクチンという免疫グロブリンスーパーファミリーに属する細胞-細胞間接着分子によって決められている<ref><pubmed> 11827984 </pubmed></ref>。(ネクチンがカドヘリンを細胞接着部位にリクルートすることは、上皮細胞のアドへレンス・ジャンクションなどでも観察されていることから、組織を問わず一般的な現象であると考えられる。)  
24

回編集

案内メニュー