「ミカエリス・メンテンの式」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
68行目: 68行目:
== ミカエリス・メンテンプロット  ==
== ミカエリス・メンテンプロット  ==


[[Image:Atsuhikoishida fig 1.jpg|thumb|300px|<b>図1.基質濃度と酵素活性の関係</b>(ミカエリス・メンテンプロット、またはS-vプロット)]]  
[[Image:Atsuhikoishida fig 1.jpg|thumb|300px|<b>図1.基質濃度と酵素活性の関係</b><br>(ミカエリス・メンテンプロット、またはS-vプロット)]]  


 (7)式も(13)式も、酵素反応速度(すなわち酵素活性)と基質濃度の関係を定量的に表した式である。実験的には様々な基質濃度で酵素活性を測定し、横軸に基質濃度、縦軸に酵素活性をとってプロットした場合、図1に示すように、数学的には[[wikipedia:ja:直角双曲線|直角双曲線]]の形となる。このようなプロットをミカエリス・メンテンプロット(S-vプロット)と呼ぶ。図1から明らかなように、基質濃度が<span class="texhtml">''K''<sub>''m''</sub></span>値(<span class="texhtml">''V''<sub>''max''</sub></span>の1/2の速度を与える時の基質濃度)付近或いはそれ以下の場合には酵素活性は基質濃度に大きく依存し、基質濃度の少しの変化でも酵素活性は大きく影響を受けるが、<span class="texhtml">''K''<sub>''m''</sub></span>値より十分大きい基質濃度の場合、酵素活性は<span class="texhtml">''V''<sub>''max''</sub></span>の値に近づき、濃度が大きくなるにつれて基質濃度依存性が殆どなくなる。従って、一般に酵素活性を測定する場合は、基質初濃度の誤差や、反応の進行に伴う基質濃度減少の影響を避けるため、できるだけ高濃度の基質(<span class="texhtml">''K''<sub>''m''</sub></span>値の5〜10倍、或いはそれ以上)を用いて活性測定を行うことが望ましい。しかしながら基質阻害により、高濃度では逆に活性が低下する場合もあるので、基質濃度を予め低濃度から高濃度まで振ってみて基質阻害がないことを確認するなどの注意も必要である。  
 (7)式も(13)式も、酵素反応速度(すなわち酵素活性)と基質濃度の関係を定量的に表した式である。実験的には様々な基質濃度で酵素活性を測定し、横軸に基質濃度、縦軸に酵素活性をとってプロットした場合、図1に示すように、数学的には[[wikipedia:ja:直角双曲線|直角双曲線]]の形となる。このようなプロットをミカエリス・メンテンプロット(S-vプロット)と呼ぶ。図1から明らかなように、基質濃度が<span class="texhtml">''K''<sub>''m''</sub></span>値(<span class="texhtml">''V''<sub>''max''</sub></span>の1/2の速度を与える時の基質濃度)付近或いはそれ以下の場合には酵素活性は基質濃度に大きく依存し、基質濃度の少しの変化でも酵素活性は大きく影響を受けるが、<span class="texhtml">''K''<sub>''m''</sub></span>値より十分大きい基質濃度の場合、酵素活性は<span class="texhtml">''V''<sub>''max''</sub></span>の値に近づき、濃度が大きくなるにつれて基質濃度依存性が殆どなくなる。従って、一般に酵素活性を測定する場合は、基質初濃度の誤差や、反応の進行に伴う基質濃度減少の影響を避けるため、できるだけ高濃度の基質(<span class="texhtml">''K''<sub>''m''</sub></span>値の5〜10倍、或いはそれ以上)を用いて活性測定を行うことが望ましい。しかしながら基質阻害により、高濃度では逆に活性が低下する場合もあるので、基質濃度を予め低濃度から高濃度まで振ってみて基質阻害がないことを確認するなどの注意も必要である。  
78行目: 78行目:
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  
<br>      <math>\frac{1}{v} = \frac{K_m}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>     (14)  


<br>  とすれば、<span class="texhtml">1 / [''S'']</span>に対する<span class="texhtml">1 / ''v''</span>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば図2に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットのx切片が<span class="texhtml"> − 1 / ''K''<sub>''m''</sub></span>,y切片が<span class="texhtml">1 / ''V''<sub>''max''</sub></span>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。 [[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|図2 ラインウィーバー・バークプロット(二重逆数プロット)]]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平<br>蛋白質・酵素の基礎実験法<br>''南江堂 (東京)'':1981</ref>。      
<br>  とすれば、<span class="texhtml">1 / [''S'']</span>に対する<span class="texhtml">1 / ''v''</span>のプロットが直線となる。従ってミカエリス・メンテンの式に従う酵素では、基質濃度の逆数に対して、酵素活性の逆数をプロットすれば図2に示すような直線プロット(ラインウィーバー・バークプロットまたは二重逆数プロット)となり、このプロットのx切片が<span class="texhtml"> − 1 / ''K''<sub>''m''</sub></span>,y切片が<span class="texhtml">1 / ''V''<sub>''max''</sub></span>を与える。この方法はグラフ用紙さえあれば簡単にできるので以前はよく行われたが、低基質濃度のデータの誤差が大きく出るなどの欠点もあり、パソコンが普及した現在では、ミカエリス・メンテンプロットを適当なソフトウェアを用いて双曲線にフィッティングして、直接(7)式または(13)式の各パラメータを求めるdirect fitting法によることが多くなった。  
 
[[Image:AtsuhikoIshida fig 2.jpg|thumb|300px|'''図2.ラインウィーバー・バークプロット(二重逆数プロット)''']]  <br> (7)式または(13)式(ミカエリス・メンテンの式またはブリッグス・ホールデンの式)は多くの酵素にあてはまる便利な式であるが、(1)の反応スキームに従うことを前提にしているので、当然これにあてはまらない場合も存在する。そのような場合に(7)式または(13)式を無理にあてはめて解析することは、誤った結論を導く可能性があるので注意が必要である。そのような場合の扱いに関しては、例えば以下の文献を参照されたい<ref>''' 堀尾武一、山下仁平<br>蛋白質・酵素の基礎実験法<br>''南江堂 (東京)'':1981</ref>。      


== 速度論的パラメータの意味  ==
== 速度論的パラメータの意味  ==
137行目: 139行目:
<br>      <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>            (25)  
<br>      <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1}{V_{max}}</math>            (25)  


従って<span class="texhtml">1 / [''S'']</span>に対して<span class="texhtml">1 / ''v''</span>をプロット(ラインウィーバー・バークプロットまたは二重逆数プロット)すると図3のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、y軸上の一点(y切片 = <span class="texhtml">1 / ''V''<sub>''max''</sub></span>)で交わる直線群が得られる。[[Image:AtsuhikoIshida fig 3.jpg|thumb|300px|図3 競合阻害剤存在下でのラインウィーバー・バークプロット。各直線はy軸上の一点で交わる。]]これらの直線の傾きは  
従って<span class="texhtml">1 / [''S'']</span>に対して<span class="texhtml">1 / ''v''</span>をプロット(ラインウィーバー・バークプロットまたは二重逆数プロット)すると図3のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、y軸上の一点(y切片 = <span class="texhtml">1 / ''V''<sub>''max''</sub></span>)で交わる直線群が得られる。
 
[[Image:AtsuhikoIshida fig 3.jpg|thumb|300px|'''図3.競合阻害剤存在下でのラインウィーバー・バークプロット'''<br>各直線はy軸上の一点で交わる。]]これらの直線の傾きは  


<br>      <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math>            (26)  
<br>      <math>\frac{K_m(1+\frac{[I]}{K_i})}{V_{max}} = \frac{K_m}{V_{max}}\frac{1}{K_i}[I] + \frac{K_m}{V_{max}}</math>            (26)  


と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26)式に従った直線となり、その直線のx切片(<math>-K_i</math>に相当)の値から<span class="texhtml">''K''<sub>''i''</sub></span>値を求めることが出来る。<span class="texhtml">''K''<sub>''i''</sub></span>は阻害定数と呼ばれ、この場合、酵素—阻害剤複合体の解離定数に相当する。<span class="texhtml">''K''<sub>''i''</sub></span>は酵素と阻害剤の親和性の尺度であり、値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:AtsuhikoIshida fig 4.jpg|thumb|300px|図4 Ki値を求めるための二次プロット。各阻害剤濃度に対して図3のプロットの傾きをプロットしたもの。]]  
と表せるので、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図3のラインウィーバー・バークプロットの傾きをプロットした図4のような2次プロットを作成すると、(26)式に従った直線となり、その直線のx切片(<math>-K_i</math>に相当)の値から<span class="texhtml">''K''<sub>''i''</sub></span>値を求めることが出来る。<span class="texhtml">''K''<sub>''i''</sub></span>は阻害定数と呼ばれ、この場合、酵素—阻害剤複合体の解離定数に相当する。<span class="texhtml">''K''<sub>''i''</sub></span>は酵素と阻害剤の親和性の尺度であり、値が小さいほど酵素に対する親和性が強いことを示す。
 
[[Image:AtsuhikoIshida fig 4.jpg|thumb|300px|'''図4.Ki値を求めるための二次プロット'''<br>各阻害剤濃度に対して図3のプロットの傾きをプロットしたもの。]]  
<br>
<br>


168行目: 174行目:
<br>       <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math>       (33)  
<br>       <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math>       (33)  


従って<span class="texhtml">1 / [''S'']</span>に対して<span class="texhtml">1 / ''v''</span>をプロットすると図5のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、x軸上の一点(x切片 = <span class="texhtml"> − 1 / ''K''<sub>''m''</sub></span>)で交わる直線群が得られる。これらの直線の傾きは (26)式で表せるので、競合阻害の場合と同様、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図5のラインウィーバー・バークプロットの傾きをプロットした2次プロットは図4のようになり、その直線のx切片の値から<span class="texhtml">''K''<sub>''i''</sub></span>値を求めることが出来る。この場合も阻害定数<span class="texhtml">''K''<sub>''i''</sub></span>は値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:Atsuhikoishida fig 5.jpg|thumb|300px|図5 非競合阻害剤存在下のラインウィーバー・バークプロット。各直線はx軸上の一点で交わる。]]  
従って<span class="texhtml">1 / [''S'']</span>に対して<span class="texhtml">1 / ''v''</span>をプロットすると図5のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、x軸上の一点(x切片 = <span class="texhtml"> − 1 / ''K''<sub>''m''</sub></span>)で交わる直線群が得られる。これらの直線の傾きは (26)式で表せるので、競合阻害の場合と同様、各阻害剤濃度<span class="texhtml">[''I'']</span>に対して、図5のラインウィーバー・バークプロットの傾きをプロットした2次プロットは図4のようになり、その直線のx切片の値から<span class="texhtml">''K''<sub>''i''</sub></span>値を求めることが出来る。この場合も阻害定数<span class="texhtml">''K''<sub>''i''</sub></span>は値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:Atsuhikoishida fig 5.jpg|thumb|300px|'''図5.非競合阻害剤存在下のラインウィーバー・バークプロット'''<br>各直線はx軸上の一点で交わる。]]  


 以上のように、阻害剤濃度や基質濃度を様々に変えて酵素活性を測定し、図3や図5のようなラインウィーバー・バークプロットのパターンを調べることにより、その阻害剤と酵素の親和性や阻害剤の結合部位に関する情報を簡便に得ることが出来る。
 以上のように、阻害剤濃度や基質濃度を様々に変えて酵素活性を測定し、図3や図5のようなラインウィーバー・バークプロットのパターンを調べることにより、その阻害剤と酵素の親和性や阻害剤の結合部位に関する情報を簡便に得ることが出来る。




195行目: 201行目:
<references />  
<references />  


<br> (執筆者:石田敦彦 担当編集委員:林 康紀)
 
(執筆者:石田敦彦 担当編集委員:林 康紀)

案内メニュー