「アセチル化」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
6行目: 6行目:
==タンパク質のアセチル化==
==タンパク質のアセチル化==
 [[Image:Nm-Kinichinakashima fig 2.png|thumb|350px|'''図2.ヒストンのアセチル化、脱アセチル化による転写活性状態の変化'''<br>
[[Image:Nm-Kinichinakashima fig 2.png|thumb|350px|'''図2.ヒストンのアセチル化、脱アセチル化による転写活性状態の変化'''<br>
ヒストンがHATによりアセチル化された状態ではヒストン-DNA間の結合が緩むことで、TFやPolⅡの結合が可能となり、転写は活性化される。逆にHDACにより、ヒストンが脱アセチル化されるとTF、PolⅡが結合出来ないため転写は抑制される。<br>GTF:general transcription factor:基本転写因子群、Ac:acetylation:アセチル化]]タンパク質のアセチル化は、[[クロマチン]]の構造制御や転写活性制御に重要な働きをしている。転写活性化に働く[[補因子]]の多くがアセチル化酵素活性を持っており、逆に転写抑制に働く補因子の多くは脱アセチル化酵素活性を有する。代表的なアセチル化酵素(HAT、histone acetyltransferase)として、[[CBP/p300(CREB binding protein)]]や[[PCAF(p300/CBP-associated factor)]]などが存在し、脱アセチル化酵素(HDAC、histone deacetylase)として[[HDAC]]1~11、[[SIRT]]1~7(sirtuin1~7)が存在している。これらの酵素を含む複合体は、様々なシグナル経路に応答して、[[DNA]] に結合する[[転写因子]](Transcription factor:TF)と協調して働くことが知られている。
ヒストンがHATによりアセチル化された状態ではヒストン-DNA間の結合が緩むことで、TFやPolⅡの結合が可能となり、転写は活性化される。逆にHDACにより、ヒストンが脱アセチル化されるとTF、PolⅡが結合出来ないため転写は抑制される。<br>GTF:general transcription factor:基本転写因子群、Ac:acetylation:アセチル化]]
 タンパク質のアセチル化は、[[クロマチン]]の構造制御や転写活性制御に重要な働きをしている。転写活性化に働く[[補因子]]の多くがアセチル化酵素活性を持っており、逆に転写抑制に働く補因子の多くは脱アセチル化酵素活性を有する。


 タンパク質のアセチル化において最も多く報告されているのが[[ヒストン]]のアセチル化及び脱アセチル化である。これらは遺伝子の発現制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定のリジン残基のアミノ基(-NH2(-NH3+))をアミド(-NHCOCH3)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[RNAポリメラーゼ]](PolⅡ)がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。<br>
===ヒストン===
 タンパク質のアセチル化において最も多く報告されているのが[[ヒストン]]のアセチル化及び脱アセチル化である。これらは遺伝子の発現制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定のリジン残基のアミノ基(-NH2(-NH3+))をアミド(-NHCOCH3)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[RNAポリメラーゼ]](PolⅡ)がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。


 代表的なアセチル化酵素(HAT、histone acetyltransferase)として、[[CBP/p300(CREB binding protein)]]や[[PCAF(p300/CBP-associated factor)]]などが存在し、脱アセチル化酵素(HDAC、histone deacetylase)として[[HDAC]]1~11、[[SIRT]]1~7(sirtuin1~7)が存在している。これらの酵素を含む複合体は、様々なシグナル経路に応答して、[[DNA]] に結合する[[転写因子]](Transcription factor:TF)と協調して働くことが知られている。
===非ヒストンタンパク質===
 その他にも、[[p53]] 、[[E2F]]、[[MyoD]]、[[STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref name="ref1"><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、増殖、[[アポトーシス]]、分化など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref><pubmed>18722172</pubmed></ref>。
 その他にも、[[p53]] 、[[E2F]]、[[MyoD]]、[[STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref name="ref1"><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、増殖、[[アポトーシス]]、分化など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref><pubmed>18722172</pubmed></ref>。


80行目: 85行目:
|-
|-
|}
|}


==神経系でのタンパク質アセチル化==
==神経系でのタンパク質アセチル化==

案内メニュー