「神経細胞移動」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
=== 放射状移動の3つの様式  ===
=== 放射状移動の3つの様式  ===


放射状移動は、脳室帯から脳表面へと伸びる放射状グリア(radial glia)の長い突起、すなわち放射状線維(radial fiber)を足場として移動するモデルが広く受け入れられてきた<ref><pubmed> 4624784 </pubmed></ref>。この移動様式をロコモーション(locomotion)と呼ぶ。ロコモーション細胞は進行方向側に比較的太い先導突起(leading process)、反対側には細いトレーリングプロセス(trailing process)を持つ特徴的な双極性の形態をとる。ロコモーションでは、細胞体が動いている時期と静止している時期が周期的に繰り返される跳躍的な移動が観察される。近年になって、これとは異なる移動様式がライブイメージングにより観察され、ロコモーションと合わせて現在では3種類の移動様式が知られるようになった。その1つが細胞体トランスロケーション(somal translocation)である<ref name="ref1"><pubmed> 11175874 </pubmed></ref>。この移動様式では、移動方向側に長く伸びた突起が、その先端を固定しながら短縮し、細胞体が引き上げられる。第三の移動様式は、産生されて間もなくの神経細胞に見られる。これらの細胞は多数の突起を色々な方向に伸ばしており、多極性細胞と呼ばれる。多極性細胞はその突起を活発に伸縮させながら、細胞体は様々な方向に漂い、全体としてはゆっくりと脳表面側へと向かう。これを多極性移動(multipolar migration)と呼ぶ<ref><pubmed>14602813 </pubmed></ref>。細胞体トランスロケーションと多極性移動は放射状線維を使わないとされる。  
放射状移動は、脳室帯から脳表面へと伸びる[[放射状グリア]](radial glia)の長い突起、すなわち放射状線維(radial fiber)を足場として移動するモデルが広く受け入れられてきた<ref><pubmed> 4624784 </pubmed></ref>。この移動様式をロコモーション(locomotion)と呼ぶ。ロコモーション細胞は進行方向側に比較的太い先導突起(leading process)、反対側には細いトレーリングプロセス(trailing process)を持つ特徴的な双極性の形態をとる。ロコモーションでは、細胞体が動いている時期と静止している時期が周期的に繰り返される跳躍的な移動が観察される。近年になって、これとは異なる移動様式がライブイメージングにより観察され、ロコモーションと合わせて現在では3種類の移動様式が知られるようになった。その1つが細胞体トランスロケーション(somal translocation)である<ref name="ref1"><pubmed> 11175874 </pubmed></ref>。この移動様式では、移動方向側に長く伸びた突起が、その先端を固定しながら短縮し、細胞体が引き上げられる。第三の移動様式は、産生されて間もなくの神経細胞に見られる。これらの細胞は多数の突起を色々な方向に伸ばしており、多極性細胞と呼ばれる。多極性細胞はその突起を活発に伸縮させながら、細胞体は様々な方向に漂い、全体としてはゆっくりと脳表面側へと向かう。これを多極性移動(multipolar migration)と呼ぶ<ref><pubmed>14602813 </pubmed></ref>。細胞体トランスロケーションと多極性移動は放射状線維を使わないとされる。  


移動様式の図  
移動様式の図  
29行目: 29行目:
<span style="font-size: 20px; line-height: 1.5em;">大脳皮質抑制性神経細胞に見られる接線方向移動</span>  
<span style="font-size: 20px; line-height: 1.5em;">大脳皮質抑制性神経細胞に見られる接線方向移動</span>  


大脳皮質の抑制性神経細胞は外套ではなく、その腹側にある基底核原基(ganglionic eminence)で産生され、接線方向に移動して大脳皮質へ入る<ref><pubmed>9334308</pubmed></ref><ref><pubmed>9334406</pubmed></ref>。基底核原基は内側、外側、尾側基底核原基(medial, lateral, and caudal ganglionic eminences; MGE, LGE, CGE)の3つの領域に大きく分けられる。大脳皮質に入る抑制性神経細胞(特にパルブアルブミン陽性細胞、およびソマトスタチン陽性細胞)の多くはMGEに由来する。これらが外套に入る際には脳室下帯/中間帯を通るものと、辺縁帯を通るものに分かれ<ref><pubmed>11343646</pubmed></ref>、脳室下帯/中間帯を通過したグループはその後、脳表面側へと向かい、その一部は辺縁帯にまで達して接線方向にランダムウォークした後、再び皮質板内へと潜り込む<ref><pubmed>19193877</pubmed></ref>。大脳皮質の抑制性神経細胞の約3割はセロトニン5-HT(3A)受容体陽性であり、そのほとんどはCGEに由来する<ref><pubmed>21159951</pubmed></ref>。これらの細胞はReelin陽性細胞やCalretinin陽性細胞、VIP (vasoactive intestinal polypeptide) 陽性細胞を含む<ref><pubmed>20130169</pubmed></ref>。CGEから外套へ向かう細胞は大脳の後方へ回り込むシャープな細胞の流れを作り、これをcaudal migratory stream (CMS)と呼ぶ<ref><pubmed>16079409</pubmed></ref><ref><pubmed>19074032</pubmed></ref>。CGEはさらに扁桃体の神経細胞を供給する。大脳皮質の抑制性神経細胞は上記の他、視索前野(preoptic area)にも由来する<ref><pubmed>19625528</pubmed></ref>。LGEに由来する神経細胞は主に線条体神経細胞、および嗅球へ向かう介在神経細胞となる<ref><pubmed>12514213</pubmed></ref>。  
大脳皮質の抑制性神経細胞は外套ではなく、その腹側にある[[基底核原基]](ganglionic eminence)で産生され、接線方向に移動して大脳皮質へ入る<ref><pubmed>9334308</pubmed></ref><ref><pubmed>9334406</pubmed></ref>。基底核原基は内側、外側、尾側基底核原基(medial, lateral, and caudal ganglionic eminences; MGE, LGE, CGE)の3つの領域に大きく分けられる。大脳皮質に入る抑制性神経細胞(特にパルブアルブミン陽性細胞、およびソマトスタチン陽性細胞)の多くはMGEに由来する。これらが外套に入る際には脳室下帯/中間帯を通るものと、辺縁帯を通るものに分かれ<ref><pubmed>11343646</pubmed></ref>、脳室下帯/中間帯を通過したグループはその後、脳表面側へと向かい、その一部は辺縁帯にまで達して接線方向にランダムウォークした後、再び皮質板内へと潜り込む<ref><pubmed>19193877</pubmed></ref>。大脳皮質の抑制性神経細胞の約3割はセロトニン5-HT(3A)受容体陽性であり、そのほとんどはCGEに由来する<ref><pubmed>21159951</pubmed></ref>。これらの細胞はReelin陽性細胞やCalretinin陽性細胞、VIP (vasoactive intestinal polypeptide) 陽性細胞を含む<ref><pubmed>20130169</pubmed></ref>。CGEから外套へ向かう細胞は大脳の後方へ回り込むシャープな細胞の流れを作り、これをcaudal migratory stream (CMS)と呼ぶ<ref><pubmed>16079409</pubmed></ref><ref><pubmed>19074032</pubmed></ref>。CGEはさらに扁桃体の神経細胞を供給する。大脳皮質の抑制性神経細胞は上記の他、視索前野(preoptic area)にも由来する<ref><pubmed>19625528</pubmed></ref>。LGEに由来する神経細胞は主に線条体神経細胞、および嗅球へ向かう介在神経細胞となる<ref><pubmed>12514213</pubmed></ref>。  


== その他の部位における神経細胞移動  ==
== その他の部位における神経細胞移動  ==
35行目: 35行目:
=== 小脳  ===
=== 小脳  ===


出来上がった小脳では、脳表面から分子層、プルキンエ細胞層、顆粒層が全体として小脳皮質を形成する。その深部には軸索に富んだ小脳髄質があり、それに埋め込まれるように小脳核が位置する。プルキンエ細胞層には大型のプルキンエ細胞が、顆粒層には小型の顆粒細胞が存在する。顆粒細胞の軸索はT字型で、顆粒層から分子層へと伸び、左右に二股に分かれて小脳表面に並行に伸びる。この左右に伸びる部分は平行線維と呼ばれる。これに対して、プルキンエ細胞の樹状突起は分子層内で矢状面(左右軸に直交する面)に展開している。プルキンエ細胞の軸索は小脳核へと連絡しており、これを抑制的に支配している。 さて、このような構造がいかに形成されるかを概観する。まず中枢神経系は神経管に由来し、もとは筒状の構造であるが、マウスでは胎生10日頃に中脳後脳境界部で背屈が起こり、チューブ状の構造が左右に大きく引き伸ばされて、結果として薄い天井(蓋板と呼ぶ)の下に菱形の空間が形成される。その上唇と下唇の実質部分をそれぞれ上菱脳唇(upper rhombic lip)、下菱脳唇(lower rhombic lip)と呼び、そのうち上菱脳唇から小脳が形成される。この構造の尾側縁(蓋板との連結部)は非常に細胞分裂が活発な部分であり、germinal trigoneと呼ばれる。この部位では顆粒細胞の前駆細胞が形成される。これらの細胞は上菱脳唇の表面を後方から前方へと広がりながら被い、やがて、小脳原基表面に外顆粒層(external granular layer)を形成する。顆粒細胞前駆細胞は外顆粒層内でさらに分裂を繰り返してボリュームを増す。一方、プルキンエ細胞、および小脳核を形成する神経細胞は上菱脳唇の脳室面における分裂で産生され(マウスでは胎生10〜13日目)、大脳の興奮性皮質神経細胞と類似して、脳室面から小脳表面へと伸びる放射状グリアの突起を足場として移動する。小脳核神経細胞は途中で放射状グリアの突起から離脱するが、プルキンエ細胞は外顆粒層直下まで移動する。これらの細胞移動が終了すると放射状グリアは突起を短縮して細胞体を引き上げ、プルキンエ細胞に隣接するようになり、バーグマングリアと呼ばれるようになる。周生期頃になると、外顆粒層の深部のものから分裂が停止し、左右軸に沿って細胞体の両端から軸索が伸び始め、まず平行線維が形成される。次にこの軸索をその場に残しながら細胞体が小脳深部へ潜りこみ、プルキンエ細胞層を通過してその下まで移動する。この結果、プルキンエ細胞層の下に新たな内顆粒層が形成される。この軸索形成と細胞移動が外顆粒層の深部から表層部へと順番に進行し、やがて外顆粒層からは細胞がいなくなり、分子層となり、内顆粒層は単に顆粒層と呼ばれるようになる。外顆粒層から内顆粒層への顆粒細胞の移動はバーグマングリアの突起を足場としている<ref>'''Joseph Altman, Shirley Ann Bayer'''<br>Development of the cerebellar system<br>''CRC Press(Boca Ranton)'':1997</ref>。  
出来上がった小脳では、脳表面から分子層、プルキンエ細胞層、顆粒層が全体として小脳皮質を形成する。その深部には軸索に富んだ小脳髄質があり、それに埋め込まれるように小脳核が位置する。プルキンエ細胞層には大型の[[プルキンエ細胞]]が、顆粒層には小型の[[顆粒細胞]]が存在する。顆粒細胞の軸索はT字型で、顆粒層から分子層へと伸び、左右に二股に分かれて小脳表面に並行に伸びる。この左右に伸びる部分は[[平行線維]]と呼ばれる。これに対して、プルキンエ細胞の樹状突起は分子層内で矢状面(左右軸に直交する面)に展開している。プルキンエ細胞の軸索は小脳核へと連絡しており、これを抑制的に支配している。 さて、このような構造がいかに形成されるかを概観する。まず中枢神経系は神経管に由来し、もとは筒状の構造であるが、マウスでは胎生10日頃に中脳後脳境界部で背屈が起こり、チューブ状の構造が左右に大きく引き伸ばされて、結果として薄い天井(蓋板と呼ぶ)の下に菱形の空間が形成される。その上唇と下唇の実質部分をそれぞれ上菱脳唇(upper rhombic lip)、下菱脳唇(lower rhombic lip)と呼び、そのうち上菱脳唇から小脳が形成される。この構造の尾側縁(蓋板との連結部)は非常に細胞分裂が活発な部分であり、germinal trigoneと呼ばれる。この部位では顆粒細胞の前駆細胞が形成される。これらの細胞は上菱脳唇の表面を後方から前方へと広がりながら被い、やがて、小脳原基表面に外顆粒層(external granular layer)を形成する。顆粒細胞前駆細胞は外顆粒層内でさらに分裂を繰り返してボリュームを増す。一方、プルキンエ細胞、および[[小脳核]]を形成する神経細胞は上菱脳唇の脳室面における分裂で産生され(マウスでは胎生10〜13日目)、大脳の興奮性皮質神経細胞と類似して、脳室面から小脳表面へと伸びる放射状グリアの突起を足場として移動する。小脳核神経細胞は途中で放射状グリアの突起から離脱するが、プルキンエ細胞は外顆粒層直下まで移動する。これらの細胞移動が終了すると放射状グリアは突起を短縮して細胞体を引き上げ、プルキンエ細胞に隣接するようになり、[[バーグマングリア]]と呼ばれるようになる。周生期頃になると、外顆粒層の深部のものから分裂が停止し、左右軸に沿って細胞体の両端から軸索が伸び始め、まず平行線維が形成される。次にこの軸索をその場に残しながら細胞体が小脳深部へ潜りこみ、プルキンエ細胞層を通過してその下まで移動する。この結果、プルキンエ細胞層の下に新たな内顆粒層が形成される。この軸索形成と細胞移動が外顆粒層の深部から表層部へと順番に進行し、やがて外顆粒層からは細胞がいなくなり、分子層となり、内顆粒層は単に顆粒層と呼ばれるようになる。外顆粒層から内顆粒層への顆粒細胞の移動はバーグマングリアの突起を足場としている<ref>'''Joseph Altman, Shirley Ann Bayer'''<br>Development of the cerebellar system<br>''CRC Press(Boca Ranton)'':1997</ref>。  


=== 脳幹における細胞移動  ===
=== 脳幹における細胞移動  ===


脳幹(中脳、橋、延髄)においても多くの細胞移動が観察されるが、小脳に投射する神経核(小脳前核)は、移動距離も比較的長く、興味深い研究対象になっている。小脳前核には、橋にある橋核、及び橋被蓋網様核、延髄にある外側網様核、及び外側楔状束核(副楔状束核)が含まれる。これらは全て下菱脳唇に由来し、ここから橋に向かうanterior extramural migratory stream (AEMS)と延髄に向かうposterior extramural migratory stream (PEMS)の2条に分かれて、延髄表面に対して接線方向に腹側へ向かって移動する<ref><pubmed>3693596</pubmed></ref><ref><pubmed>3693597</pubmed></ref>。この際に、橋核神経細胞は軟膜より少し内側を通って正中線手前で停止する。これに対し、橋被蓋網様核/外側網様核/外側楔状束核神経細胞は軟膜直下を通り、正中線を超えて対側に移動する。これらの神経細胞はそれぞれしかるべき背腹軸の高さで、接線方向への移動を停止し、脳室帯から伸びる放射状線維に沿って脳の内側へ向かう移動に転換する。これらはまた、しかるべき深さで内側への移動を停止し、それぞれの神経核を定められた場所に形成する<ref><pubmed>12221009</pubmed></ref>。  
脳幹([[中脳]]、[[橋]]、[[延髄]])においても多くの細胞移動が観察されるが、小脳に投射する神経核(小脳前核)は、移動距離も比較的長く、興味深い研究対象になっている。小脳前核には、橋にある[[橋核]]、及び[[橋被蓋網様核]]、延髄にある[[外側網様核]]、及び[[外側楔状束核]](副楔状束核)が含まれる。これらは全て下菱脳唇に由来し、ここから橋に向かうanterior extramural migratory stream (AEMS)と延髄に向かうposterior extramural migratory stream (PEMS)の2条に分かれて、延髄表面に対して接線方向に腹側へ向かって移動する<ref><pubmed>3693596</pubmed></ref><ref><pubmed>3693597</pubmed></ref>。この際に、橋核神経細胞は軟膜より少し内側を通って正中線手前で停止する。これに対し、橋被蓋網様核/外側網様核/外側楔状束核神経細胞は軟膜直下を通り、正中線を超えて対側に移動する。これらの神経細胞はそれぞれしかるべき背腹軸の高さで、接線方向への移動を停止し、脳室帯から伸びる放射状線維に沿って脳の内側へ向かう移動に転換する。これらはまた、しかるべき深さで内側への移動を停止し、それぞれの神経核を定められた場所に形成する<ref><pubmed>12221009</pubmed></ref>。  


== 成体における神経細胞移動  ==
== 成体における神経細胞移動  ==


成体において神経細胞は新たに作られないと長い間信じられてきたが、近年これは否定され、成体においても海馬の歯状回や嗅球の介在神経細胞においては神経細胞の新生が起きることが証明された<ref><pubmed>9809557</pubmed></ref><ref><pubmed>11826091</pubmed></ref>。これらの部位でも新生された神経細胞は所定の位置まで移動することが観察される。 成体の海馬歯状回においては、顆粒細胞層の深部に隣接してsubgranular zone があり、ここで神経細胞新生が起きる。これは、休止期にあったType-1細胞(放射状グリア様細胞)が分裂を再開することによる。やがてここからDCXなど幼若神経細胞のマーカーを持つがさらに分裂するType-2細胞を経て、新生神経細胞へと分化が進む。この時期に新生神経細胞はsubgranular zoneから顆粒細胞層への短い距離を移動する。 嗅球の介在神経細胞に関しては長い距離を移動することが特徴である。胎仔期においてはLGE、成体においてはanterior subventricular zone (aSVZ)に由来した神経前駆細胞は、鎖状に連なり、お互いをお互いの足場として吻側へ移動する。これらの支流はやがてまとまり、大きな細胞の流れとなる。これをrostral migratory stream (RMS)と呼ぶ。RMSは周囲をアストロサイトに囲まれ、このトンネルの中を細胞は移動する。嗅球の深部に到達すると、個々の細胞に分散して、放射状に移動し、介在神経(顆粒細胞や傍糸球細胞)へと分化する。
成体において神経細胞は新たに作られないと長い間信じられてきたが、近年、成体においても海馬の歯状回や嗅球の介在神経細胞においては神経細胞の新生が起きることが証明された<ref><pubmed>9809557</pubmed></ref><ref><pubmed>11826091</pubmed></ref>。これらの部位でも新生された神経細胞は所定の位置まで移動することが観察される。 成体の海馬歯状回においては、顆粒細胞層の深部に隣接してsubgranular zone があり、ここで神経細胞新生が起きる。これは、休止期にあったType-1細胞(放射状グリア様細胞)が分裂を再開することによる。やがてここからDCXなど幼若神経細胞のマーカーを持つがさらに分裂するType-2細胞を経て、新生神経細胞へと分化が進む。この時期に新生神経細胞はsubgranular zoneから顆粒細胞層への短い距離を移動する。 嗅球の介在神経細胞に関しては長い距離を移動することが特徴である。胎仔期においてはLGE、成体においてはanterior subventricular zone (aSVZ)に由来した神経前駆細胞は、鎖状に連なり、お互いをお互いの足場として吻側へ移動する。これらの支流はやがてまとまり、大きな細胞の流れとなる。これをrostral migratory stream (RMS)と呼ぶ。RMSは周囲を[[アストロサイト]]に囲まれ、このトンネルの中を細胞は移動する。嗅球の深部に到達すると、個々の細胞は分散して、放射状に移動し、介在神経(顆粒細胞や傍糸球細胞)へと分化する。


== 関連項目  ==
== 関連項目  ==


大脳皮質 大脳皮質の発生 大脳基底核原基 リーリン  
[[大脳皮質]]
[[大脳皮質の発生]]
[[大脳基底核原基]]
[[リーリン]]


== 参考文献  ==
== 参考文献  ==
49

回編集

案内メニュー