16,040
回編集
細 (→参考文献) |
細編集の要約なし |
||
14行目: | 14行目: | ||
== 歴史 == | == 歴史 == | ||
[[image:図1.ニューロリギンのドメイン構造.jpg|thumb|350px|'''図1.ニューロリギンのドメイン構造'''<br>矢印:選択的スプライシング部位 SP:シグナルペプチド、CHO: carbohydrate-attachment sequence、TM:膜貫通領域、PDZ-BD:PDZ-domain-binding site]] | |||
[[image:図2.ニューロリギンのドメイン構造とアミノ酸配列.jpg|thumb|350px|'''図2.ニューロリギンのドメイン構造とアミノ酸配列'''<br>NLGN1(r): NP_446320.1, NLGN2(r): NP_446444.1, NLGN3(r): NP_599163.2, NLGN4(h): AAQ88925.1。#: N-linked glycosylation site on NLGN1、 +: putative O-linked glycosylation site on NLGN1<ref><pubmed>14522992</ref> <ref name=ref4 /> <ref name=ref100 />) | |||
]] | |||
[[image:図2.興奮性シナプスにおけるニューレキシンとニューロリギンの結合模式図.jpg|thumb|350px|'''図3.興奮性シナプスにおけるニューレキシンとニューロリギンの結合模式図'''<br>ニューレキシンとニューロリギンはシナプス前末端とシナプス後部間で結合している。ニューレキシンとニューロリギンはそれぞれシナプス前末端とシナプス後部のシナプス局在分子と直接・間接的に結合している。]] | |||
[[ニューレキシン1β]]の[[wikipedia:ja:アフィニティーカラム|アフィニティーカラム]]を用いた実験により、ニューレキシン1βの結合タンパク質としてニューロリギン1が初めて同定された<ref name=ref4><pubmed>7736595</pubmed></ref>。 | [[ニューレキシン1β]]の[[wikipedia:ja:アフィニティーカラム|アフィニティーカラム]]を用いた実験により、ニューレキシン1βの結合タンパク質としてニューロリギン1が初めて同定された<ref name=ref4><pubmed>7736595</pubmed></ref>。 | ||
85行目: | 90行目: | ||
細胞外ドメインの膜貫通ドメイン側にはCHO配列(carbohydrate-attachment sequence)がある。 | 細胞外ドメインの膜貫通ドメイン側にはCHO配列(carbohydrate-attachment sequence)がある。 | ||
細胞内ドメインのC-末端には、シナプス[[足場タンパク質]]([[PSD-95]]等)との結合に重要であると推定される[[PDZドメイン]]([[postsynaptic density]] ([[PSD]])-95/ discs large/ zona-occludens-1ドメイン)結合部位が存在する( | 細胞内ドメインのC-末端には、シナプス[[足場タンパク質]]([[PSD-95]]等)との結合に重要であると推定される[[PDZドメイン]]([[postsynaptic density]] ([[PSD]])-95/ discs large/ zona-occludens-1ドメイン)結合部位が存在する(図2、3)<ref><pubmed>15555927</pubmed></ref> <ref><pubmed>9278515</pubmed></ref> <ref><pubmed>15458844</pubmed></ref>。 | ||
また、膜貫通ドメインとPDZドメイン結合部位の間には、[[ゲフィリン]]結合ドメインと、構造が同定されていないcriticalドメインが存在する<ref name=ref17><pubmed>19755106</pubmed></ref> <ref name=ref18><pubmed>21532576</pubmed></ref>。 | また、膜貫通ドメインとPDZドメイン結合部位の間には、[[ゲフィリン]]結合ドメインと、構造が同定されていないcriticalドメインが存在する<ref name=ref17><pubmed>19755106</pubmed></ref> <ref name=ref18><pubmed>21532576</pubmed></ref>。 | ||
{|width=430px border="1" cellpadding="1" cellspacing="1" class="wikitable" | {|width=430px border="1" cellpadding="1" cellspacing="1" class="wikitable" | ||
104行目: | 102行目: | ||
== 発現 == | == 発現 == | ||
ニューロリギン1とニューロリギン2はそれぞれ[[中枢神経系]]の[[グルタミン酸]]作動性神経([[興奮性]])シナプスと[[GABA]]作動性神経([[抑制性]])シナプスに発現している<ref><pubmed>9927700</pubmed></ref> <ref><pubmed>15540461</pubmed></ref> <ref><pubmed>15620359</pubmed></ref>。ニューロリギンの興奮性・抑制性シナプスにおける局在はシナプス足場タンパク質(PSD-95とgephyrin)によって調節されていることが示唆されている<ref><pubmed>19914352</pubmed></ref>。また、ヒトでは、ニューロリギン2の[[wikipedia:ja:膵島|膵島]]と[[wikipedia:ja:大腸|大腸]]における発現が確認されている<ref name=ref19><pubmed>18755801</pubmed></ref>。 | ニューロリギン1とニューロリギン2はそれぞれ[[中枢神経系]]の[[グルタミン酸]]作動性神経([[興奮性]])シナプスと[[GABA]]作動性神経([[抑制性]])シナプスに発現している<ref><pubmed>9927700</pubmed></ref> <ref><pubmed>15540461</pubmed></ref> <ref><pubmed>15620359</pubmed></ref>(図3)。ニューロリギンの興奮性・抑制性シナプスにおける局在はシナプス足場タンパク質(PSD-95とgephyrin)によって調節されていることが示唆されている<ref><pubmed>19914352</pubmed></ref>。また、ヒトでは、ニューロリギン2の[[wikipedia:ja:膵島|膵島]]と[[wikipedia:ja:大腸|大腸]]における発現が確認されている<ref name=ref19><pubmed>18755801</pubmed></ref>。 | ||
ニューロリギン3は興奮性と抑制性の両シナプスに発現しており<ref name=ref9 />、[[wikipedia:ja:げっ歯類|げっ歯類]]では[[グリア細胞]]にも発現が確認されている<ref><pubmed>11329178</pubmed></ref>。また、ヒトではニューロリギン3は[[wikipedia:ja:心臓|心臓]]、[[骨格筋]]、[[wikipedia:ja:胎盤|胎盤]]、[[wikipedia:ja:膵臓|膵臓]]にも発現している<ref><pubmed>10767552</pubmed></ref>。 | ニューロリギン3は興奮性と抑制性の両シナプスに発現しており<ref name=ref9 />、[[wikipedia:ja:げっ歯類|げっ歯類]]では[[グリア細胞]]にも発現が確認されている<ref><pubmed>11329178</pubmed></ref>。また、ヒトではニューロリギン3は[[wikipedia:ja:心臓|心臓]]、[[骨格筋]]、[[wikipedia:ja:胎盤|胎盤]]、[[wikipedia:ja:膵臓|膵臓]]にも発現している<ref><pubmed>10767552</pubmed></ref>。 | ||
125行目: | 123行目: | ||
また、ニューロリギンはシナプス後部の分化にも重要である。ニューロリギン1またはニューロリギン3の強制発現は[[興奮性シナプス]]伝達機能を増加させ、一方、ニューロリギン2強制発現は[[抑制性シナプス]]伝達機能を増加させる<ref name=ref16><pubmed>17582332</pubmed></ref> <ref name=ref15><pubmed>17237775</pubmed></ref> <ref name=ref18 />。ニューロリギン1とニューロリギン2は、それぞれβ-、αニューレキシンと機能的なシナプスを形成することから、ニューロリギンとニューレキシンのアイソフォームの特異的な組み合わせが興奮性と抑制性シナプスの仕分けに関与していることが示唆されている。また、ニューロリギンのシナプス伝達への機能には、細胞内ドメインではなく細胞外ドメインが重要であると考えられている<ref><pubmed>23426688</pubmed></ref>。 | また、ニューロリギンはシナプス後部の分化にも重要である。ニューロリギン1またはニューロリギン3の強制発現は[[興奮性シナプス]]伝達機能を増加させ、一方、ニューロリギン2強制発現は[[抑制性シナプス]]伝達機能を増加させる<ref name=ref16><pubmed>17582332</pubmed></ref> <ref name=ref15><pubmed>17237775</pubmed></ref> <ref name=ref18 />。ニューロリギン1とニューロリギン2は、それぞれβ-、αニューレキシンと機能的なシナプスを形成することから、ニューロリギンとニューレキシンのアイソフォームの特異的な組み合わせが興奮性と抑制性シナプスの仕分けに関与していることが示唆されている。また、ニューロリギンのシナプス伝達への機能には、細胞内ドメインではなく細胞外ドメインが重要であると考えられている<ref><pubmed>23426688</pubmed></ref>。 | ||
ニューロリギン1はPSD-95との結合によって、選択的に興奮性シナプスを構築する<ref><pubmed>15358863</pubmed></ref>。一方、ニューロリギン2は抑制性シナプス後部特異的な足場タンパク質であるゲフィリンを介して、抑制性シナプスを構築する<ref name=ref17 />。また、ニューロリギン1の細胞外ドメインは、[[NMDA型グルタミン酸受容体]]と相互作用を示し、シナプス後部におけるNMDA型グルタミン酸受容体の機能を調節していると報告されている<ref><pubmed>23269831</pubmed></ref>。シナプスの形成にはニューロリギンのホモ二量体、ヘテロ二量体形成が必要であることが報告されている<ref name=ref9 /> <ref><pubmed>23129658</pubmed></ref> <ref name=ref8 />。 | ニューロリギン1はPSD-95との結合によって、選択的に興奮性シナプスを構築する(図3)<ref><pubmed>15358863</pubmed></ref>。一方、ニューロリギン2は抑制性シナプス後部特異的な足場タンパク質であるゲフィリンを介して、抑制性シナプスを構築する<ref name=ref17 />。また、ニューロリギン1の細胞外ドメインは、[[NMDA型グルタミン酸受容体]]と相互作用を示し、シナプス後部におけるNMDA型グルタミン酸受容体の機能を調節していると報告されている<ref><pubmed>23269831</pubmed></ref>。シナプスの形成にはニューロリギンのホモ二量体、ヘテロ二量体形成が必要であることが報告されている<ref name=ref9 /> <ref><pubmed>23129658</pubmed></ref> <ref name=ref8 />。 | ||
神経活動依存的にニューロリギン1は[[wikipedia:ja:翻訳後修飾|翻訳後修飾]]を受けることが知られている。細胞膜上のニューロリギン1は、NMDA型グルタミン酸受容体依存的に活性化された[[プロテアーゼ]]によって切断される<ref name=ref10><pubmed>23083741</pubmed></ref> <ref name=ref11><pubmed>23083742</pubmed></ref>。この活動依存的ニューロリギン1切断はシナプス密度を調節し<ref name=ref11 />、興奮性シナプス伝達効率を変化させる<ref name=ref10 />。 | 神経活動依存的にニューロリギン1は[[wikipedia:ja:翻訳後修飾|翻訳後修飾]]を受けることが知られている。細胞膜上のニューロリギン1は、NMDA型グルタミン酸受容体依存的に活性化された[[プロテアーゼ]]によって切断される<ref name=ref10><pubmed>23083741</pubmed></ref> <ref name=ref11><pubmed>23083742</pubmed></ref>。この活動依存的ニューロリギン1切断はシナプス密度を調節し<ref name=ref11 />、興奮性シナプス伝達効率を変化させる<ref name=ref10 />。 |