9,444
回編集
細編集の要約なし |
細 (→シナプス伝達機能への関与) |
||
30行目: | 30行目: | ||
NMDA受容体についても同様の実験が行われている。しかし、PSD-95はNMDA受容体に直接結合するにも関わらず、PSD-95の発現を操作しても、NMDA受容体依存性のEPSCに変化がないことが報告されており<ref name=ref9 /> <ref name=ref10 />、詳細な役割は不明である。 | NMDA受容体についても同様の実験が行われている。しかし、PSD-95はNMDA受容体に直接結合するにも関わらず、PSD-95の発現を操作しても、NMDA受容体依存性のEPSCに変化がないことが報告されており<ref name=ref9 /> <ref name=ref10 />、詳細な役割は不明である。 | ||
PSD-95はシナプス伝達の長期可塑性にも関与する。PSD-95ノックアウトマウスの海馬スライスでは、高頻度刺激で生じるシナプス長期増強(long-term potentiation; LTP)が促進される一方で、低頻度刺激で生じるシナプス長期抑制(long-term depression; LTD)は抑制される<ref name=ref10 />。逆に、PSD-95を過剰発現させた細胞では、LTPが抑制され、LTDが亢進する<ref name=ref14><pubmed>12843250</pubmed></ref> | PSD-95はシナプス伝達の長期可塑性にも関与する。PSD-95ノックアウトマウスの海馬スライスでは、高頻度刺激で生じるシナプス長期増強(long-term potentiation; LTP)が促進される一方で、低頻度刺激で生じるシナプス長期抑制(long-term depression; LTD)は抑制される<ref name=ref10 />。逆に、PSD-95を過剰発現させた細胞では、LTPが抑制され、LTDが亢進する<ref name=ref14><pubmed>12843250</pubmed></ref>。ノックアウトマウスにおいても空間学習能力の異常が認められており、脳機能の可塑的な変化が個体レベルでも阻害されることが分かっている<ref name=ref10 />。シナプス長期可塑性を調節する分子機構として、LTDに関しては、PSD-95がLTD発現に必要なシグナルタンパク質であるAKAP79/150と[[PP2B]]の足場となり、NMDA受容体から流入する[[カルシウム]]シグナルとこれらシグナルタンパク質を結び付けているとするモデルが提唱されている<ref name=ref15><pubmed>18215622</pubmed></ref>。また、シナプスへの局在に重要な295番目のセリン残基がシナプス長期可塑性の発現に重要であることが報告されている<ref name=ref16><pubmed>17988632</pubmed></ref>。 | ||
== 参考文献 == | == 参考文献 == | ||
<references /> | <references /> |