16,040
回編集
細 (→関連項目) |
編集の要約なし |
||
2行目: | 2行目: | ||
<font size="+1">佐藤 啓介、[http://researchmap.jp/nana 寺田 純雄]</font><br> | <font size="+1">佐藤 啓介、[http://researchmap.jp/nana 寺田 純雄]</font><br> | ||
''東京医科歯科大学 医歯薬学総合研究科 神経機能形態学分野''<br> | ''東京医科歯科大学 医歯薬学総合研究科 神経機能形態学分野''<br> | ||
DOI XXXX/XXXX 原稿受付日:2013年10月31日 原稿完成日:2013年月日<br> | DOI [[XXXX]]/XXXX 原稿受付日:2013年10月31日 原稿完成日:2013年月日<br> | ||
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br> | 担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br> | ||
</div> | </div> | ||
英語名:microtubule 独:Mikrotubulus 仏:microtubule | |||
{{box|text= | {{box|text= | ||
微小管は、真核生物における主要な細胞骨格の一つである。チュブリンのヘテロダイマーを基本構成単位とする中空の円筒状線維で、外径は約25 nm。重合と脱重合を繰り返す非常に動的な構造物で、細胞の形態維持や変化、細胞分裂、細胞内物質輸送、鞭毛や繊毛の運動等の多様な細胞機能に重要な役割を果たしている。さまざまなタンパク質と結合したり、翻訳後修飾を受けたりすることにより、その構造や動態が調節され、多様な機能を発揮する。 | |||
}} | }} | ||
29行目: | 29行目: | ||
===微小管の新規形成=== | ===微小管の新規形成=== | ||
試験管内ではtubulinを高濃度にすることにより、核となる微小管の無いところから重合が起こるが、細胞内のtubulin濃度は低くそのような重合は起こらない。そこで、細胞内には微小管形成中心(microtubule organizing center; | 試験管内ではtubulinを高濃度にすることにより、核となる微小管の無いところから重合が起こるが、細胞内のtubulin濃度は低くそのような重合は起こらない。そこで、細胞内には微小管形成中心(microtubule organizing center; MTOC)という重合核が存在する。多くの細胞では[[中心体]](centrosome)がMTOCとして働き、細胞の微小管ネットワークの中心となっている。繊毛や鞭毛では基底小体がMTOCとして働いている。 | ||
MTOCで直接的に微小管の重合開始を担うのはγ-tubulinである<ref><pubmed> 21993292</pubmed></ref>。γ-tubulinは、γ-TuSCというタンパク質複合体を形成して機能する。酵母などではこれが実際の微小管重合核となる。一方、哺乳類を含む多くの真核生物では、γ-TuSCにさらに多くのタンパク質が加わったγ-TuRCを形成する。MTOC以外にも微小管の重合開始点が存在することが知られており、多くの場合、中心体と同様γ-tubulinが重合開始を担っていると考えられている<ref><pubmed> 17245416</pubmed></ref>。 | MTOCで直接的に微小管の重合開始を担うのはγ-tubulinである<ref><pubmed> 21993292</pubmed></ref>。γ-tubulinは、γ-TuSCというタンパク質複合体を形成して機能する。酵母などではこれが実際の微小管重合核となる。一方、哺乳類を含む多くの真核生物では、γ-TuSCにさらに多くのタンパク質が加わったγ-TuRCを形成する。MTOC以外にも微小管の重合開始点が存在することが知られており、多くの場合、中心体と同様γ-tubulinが重合開始を担っていると考えられている<ref><pubmed> 17245416</pubmed></ref>。 | ||
37行目: | 37行目: | ||
これまでに数多くの微小管に結合するタンパク質が発見されており、その機能は多岐にわたっている。古典的MAP(Microtubule Associating Protein)もしくは構造的MAPに属するTauやMAP2は微小管を安定化させることにより動態を変化させる<ref><pubmed> 16938900</pubmed></ref><ref><pubmed> 15642108</pubmed></ref>。微小管のプラス端に結合するものは+TIPsと総称される<ref><pubmed> 15661518</pubmed></ref>。+TIPsには、重合を促進するもの(例:XMAP215)、重合を阻害するもの(例:CLASP)、脱重合を促進するもの(例:Kinesin-13)、膜や細胞骨格など他の構造と微小管との連結をするもの(例:EB1)等がある。マイナス端に結合するタンパク質には、γ-tubulinの他にnineinやNezha/Patroninなどがあり、脱重合を防いだり重合開始点を特定の部位に局在化したりしている<ref><pubmed> 23169647</pubmed></ref><ref><pubmed> 20946984</pubmed></ref>。KataninやSpastinのように微小管を切断する微小管結合タンパク質もある<ref><pubmed> 19963362</pubmed></ref>。StathminやSCG10は重合していないtubulinダイマーと結合し隔離することにより、微小管の脱重合を促進する<ref><pubmed> 15216892</pubmed></ref>。 | これまでに数多くの微小管に結合するタンパク質が発見されており、その機能は多岐にわたっている。古典的MAP(Microtubule Associating Protein)もしくは構造的MAPに属するTauやMAP2は微小管を安定化させることにより動態を変化させる<ref><pubmed> 16938900</pubmed></ref><ref><pubmed> 15642108</pubmed></ref>。微小管のプラス端に結合するものは+TIPsと総称される<ref><pubmed> 15661518</pubmed></ref>。+TIPsには、重合を促進するもの(例:XMAP215)、重合を阻害するもの(例:CLASP)、脱重合を促進するもの(例:Kinesin-13)、膜や細胞骨格など他の構造と微小管との連結をするもの(例:EB1)等がある。マイナス端に結合するタンパク質には、γ-tubulinの他にnineinやNezha/Patroninなどがあり、脱重合を防いだり重合開始点を特定の部位に局在化したりしている<ref><pubmed> 23169647</pubmed></ref><ref><pubmed> 20946984</pubmed></ref>。KataninやSpastinのように微小管を切断する微小管結合タンパク質もある<ref><pubmed> 19963362</pubmed></ref>。StathminやSCG10は重合していないtubulinダイマーと結合し隔離することにより、微小管の脱重合を促進する<ref><pubmed> 15216892</pubmed></ref>。 | ||
キネシンスーパーファミリー(Kinesin superfamily proteins: KIFs)は保存されたcore domainを持ち、ATPを消費して構造変化を起こす一群のタンパク質である。その多くは微小管上をプラス端に向かって移動するモーターとして機能するが、前出したKinesin-13のように、微小管の脱重合を促進する働きを持つものも存在する。詳しくはキネシンの項目を参照されたい。ダイニン(Dynein) | キネシンスーパーファミリー([[Kinesin]] superfamily proteins: KIFs)は保存されたcore domainを持ち、ATPを消費して構造変化を起こす一群のタンパク質である。その多くは微小管上をプラス端に向かって移動するモーターとして機能するが、前出したKinesin-13のように、微小管の脱重合を促進する働きを持つものも存在する。詳しくはキネシンの項目を参照されたい。ダイニン(Dynein)も同様にATPを消費するタンパク質複合体で、こちらはもっぱらモータータンパク質として働く。小胞輸送など細胞内での物質輸送や[[有糸分裂]]などに働く細胞質ダイニン1(cytoplasmic dynein 1)、鞭毛・繊毛内の逆行輸送に働く細胞質ダイニン2(cytoplasmic dynein 2)、そして繊毛や鞭毛の運動に関わる軸糸ダイニン(axonemal dynein)に分けられる。詳しくはダイニンの項目を参照されたい。 | ||
==機能== | ==機能== | ||
51行目: | 51行目: | ||
前期:中心体が複製され、活発に微小管の重合を始め、紡錘体と呼ばれる微小管の束を形成する。それに伴い、二つの中心体は離れていく。中心体は最終的に核を挟んで反対側に配置され、紡錘体極となる。 | 前期:中心体が複製され、活発に微小管の重合を始め、紡錘体と呼ばれる微小管の束を形成する。それに伴い、二つの中心体は離れていく。中心体は最終的に核を挟んで反対側に配置され、紡錘体極となる。 | ||
前中期:核膜の崩壊と核ラミナの消失が起こり、紡錘体極から伸びた微小管が動原体を介して染色体を補足する(動原体微小管)。紡錘体極から伸びる微小管には、動原体と結合せずに反対側の極からの微小管と逆並行に相互作用し、後期における紡錘体極の移動に関わるもの(極微小管)や、細胞表層に達して紡錘体と[[細胞分裂]]の軸の向きを合わせるのに働いているもの(星状体微小管)がある。 | |||
中期:染色分体のそれぞれの動原体に両側の極から伸びた微小管が結合し、全ての染色体が中期板に沿って配置される。この状態が中期である。 | 中期:染色分体のそれぞれの動原体に両側の極から伸びた微小管が結合し、全ての染色体が中期板に沿って配置される。この状態が中期である。 | ||
73行目: | 73行目: | ||
===C末端の脱チロシン化および再チロシン化=== | ===C末端の脱チロシン化および再チロシン化=== | ||
α- | α-tubulinのC末端のチロシンは除去と付加を繰り返し受けている。チロシンが除去された状態で起こる脱[[グルタミン酸]](Δ2 tubulinを生成する)は不可逆的である。 | ||
===グリシン化とグルタミン酸化=== | ===グリシン化とグルタミン酸化=== | ||
重合した状態のtubulinのC末端付近に存在する複数のグルタミン酸残基は[[グリシン]]もしくはグルタミン酸の付加を受ける。グリシンやグルタミン酸は次々と付加されていき、ポリグリシンもしくはポリグルタミン酸の側鎖となる。 | |||
===アセチル化=== | ===アセチル化=== | ||
[[アセチル化]]は主に安定化した微小管に見出される。しかし、アセチル化により微小管構造が安定化されるわけではない。α-tubulin のLys40が主要なアセチル化部位と考えられているが、他のアセチル化部位も同定されている。 | |||
==ニューロンにおける微小管== | ==ニューロンにおける微小管== | ||
86行目: | 86行目: | ||
===軸索と樹状突起における微小管=== | ===軸索と樹状突起における微小管=== | ||
軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。伸長している軸索の細胞体に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたtubulinで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないtubulinに富んでいる<ref><pubmed> 20541813</pubmed></ref> | 軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。伸長している軸索の細胞体に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたtubulinで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないtubulinに富んでいる<ref><pubmed> 20541813</pubmed></ref>。特に[[成長円錐]](growth cone)では微小管は非常に動的で形態も複雑である<ref><pubmed> 19377501</pubmed></ref>。 | ||
樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref> | 樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref>。[[ショウジョウバエ]]のニューロンでは、樹状突起の分岐点に存在する[[ゴルジ体]](Golgi outpostと呼ばれる)から微小管が伸長し、樹状突起の形態形成に重要な役割を果たしていることが明らかになっている<ref><pubmed> 23217741</pubmed></ref>。哺乳類のニューロンにおいても樹状突起の分岐点にGolgi outpostが見つかっているが、そこから微小管の伸長が起こるかは検討されていない<ref><pubmed> 16337914</pubmed></ref>。また、以前は樹状突起の棘突起(spine)には微小管は存在しないと考えられていたが、近年の研究で棘突起内に非常に動的な微小管が存在することが明らかになり、棘突起形成に関与していることが示されている。 | ||
前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばtauは軸索に、MAP2は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、MAP1Aが成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。 | 前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばtauは軸索に、MAP2は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、MAP1Aが成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。 |