「Hodgkin-Huxley方程式」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
88行目: 88行目:
::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math>
::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math>


''v''が一定となるような外部電流''I''<sub>clamp</sub>を流すと、左辺は0となるため、  
この式から、''I''<sub>ext</sub>と電位との関係を理解する事は難しい。しかし''v''が一定となるような外部電流''I''<sub>clamp</sub>を流すと、左辺は0となるため、  


::<math> I_{clamp} = \sum_X G_X (v - E_X)\, </math>
::<math> I_{clamp} = \sum_X G_X (v - E_X)\, </math>
96行目: 96行目:
::<math>I_{clamp} = G_A (v - E_A)\, </math>
::<math>I_{clamp} = G_A (v - E_A)\, </math>


となる。これはOhmの法則である。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、
となる。これはOhmの法則である。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、  


::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math>
::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math>
66

回編集

案内メニュー