「グリシン受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
63行目: 63行目:
 α<sub>4</sub>サブユニットの機能的役割は、今のところ明らかにされていない。
 α<sub>4</sub>サブユニットの機能的役割は、今のところ明らかにされていない。


 グリシンはニューロンに対して興奮性機能をもつ[[イオンチャネル型グルタミン酸受容体]]のサブタイプである[[NMDA受容体]]の調節因子(positive modulator またはco-agonist)であることが知られているが、陰イオンチャネル型のグリシン受容体も幼若期には運動ニューロンに脱分極反応を引き起こす<ref name=ref18>'''大塚正徳'''<br>化学伝達物質の歴史と現状(大塚正徳、竹内昭偏)<br>''伝達物質と受容物質'' pp.1-18  産業図書、1976</ref>。同様の現象は、GABA<sub>A</sub>受容体を介する反応でも生じる。これは、両者の受容体のイオンチャネルを透過するCl<sup>-</sup>の細胞内濃度が成熟期のニューロンよりも高いためと考えられる。ある種のニューロンの細胞内Cl<sup>-</sup>濃度は, [[K+,Cl-共輸送体|K+,Cl<sup>-</sup>共輸送体]](KCC2)により調節されており、このトランスポーターは生後に発現する<ref name=ref19><pubmed>9930699</pubmed></ref>。従ってグリシンやGABA<sub>A</sub>受容体を介する反応は、動物の成熟が進むにつれて脱分極性から過分極性に変化する。このような経時的変化は、神経回路やシナプスの可塑的変化と密接な関係があると考えられている。
 グリシンはニューロンに対して興奮性機能をもつ[[イオンチャネル型グルタミン酸受容体]]のサブタイプである[[NMDA受容体]]の調節因子(positive modulator またはco-agonist)であることが知られているが、陰イオンチャネル型のグリシン受容体も幼若期には運動ニューロンに脱分極反応を引き起こす<ref name=ref18>'''大塚正徳'''<br>化学伝達物質の歴史と現状(大塚正徳、竹内昭偏)<br>''伝達物質と受容物質'' pp.1-18  産業図書、1976</ref>。同様の現象は、GABA<sub>A</sub>受容体を介する反応でも生じる。これは、両者の受容体のイオンチャネルを透過するCl<sup>-</sup>の細胞内濃度が成熟期のニューロンよりも高いためと考えられる。ある種のニューロンの細胞内Cl<sup>-</sup>濃度は, [[K+,Cl-共輸送体|K<sup>+</sup>,Cl<sup>-</sup>共輸送体]](KCC2)により調節されており、このトランスポーターは生後に発現する<ref name=ref19><pubmed>9930699</pubmed></ref>。従ってグリシンやGABA<sub>A</sub>受容体を介する反応は、動物の成熟が進むにつれて脱分極性から過分極性に変化する。このような経時的変化は、神経回路やシナプスの可塑的変化と密接な関係があると考えられている。


== グリシン受容体の異常を伴う疾患 ==
== グリシン受容体の異常を伴う疾患 ==

案内メニュー