9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
<div align="right"> | |||
<font size="+1">[http://researchmap.jp/_tomitataisuke 富田 泰輔]</font><br> | |||
''東京大学 薬学研究科''<br> | |||
DOI [[XXXX]]/XXXX 原稿受付日:2013年12月7日 原稿完成日:2013年月日<br> | |||
担当編集委員:[http://researchmap.jp/read0141446 漆谷 真](京都大学 大学院医学研究科)<br> | |||
</div> | |||
英:amyloid-β protein、Aβ | 英:amyloid-β protein、Aβ | ||
4行目: | 11行目: | ||
{{box|text= | {{box|text= | ||
[[アルツハイマー病]] | [[アルツハイマー病]]の病理学的特徴の一つである[[老人斑]]の主要構成成分は、アミロイドβタンパク質(Aβ)と呼ばれる40アミノ酸程度のペプチドである。Aβ沈着が病理学的に捉えられる最初期病変であること、Aβが凝集し、直接[[神経細胞毒性]]を示しうること、そして[[家族性アルツハイマー病]]患者の遺伝学的解析から、Aβの産生および蓄積の異常が[[アルツハイマー病]]の発症に深く関係しているという「[[アミロイドカスケード仮説]]」が現在広く支持されている。 | ||
}}(編集コメント:抄録ですので、セクレターゼによるAPPからの産生、分解、治療戦略も含めて頂ければと思います) | }} | ||
(編集コメント:抄録ですので、セクレターゼによるAPPからの産生、分解、治療戦略も含めて頂ければと思います) | |||
==アミロイドβタンパク質とは== | ==アミロイドβタンパク質とは== | ||
[[Image:TTfig1.PNG|thumb|350px|'''図1.Aβ産生経路'''<br>APPはβ及びγセクレターゼによる切断を受ける。]] | [[Image:TTfig1.PNG|thumb|350px|'''図1.Aβ産生経路'''<br>APPはβ及びγセクレターゼによる切断を受ける。]] | ||
アルツハイマー病患者脳において蓄積している[[脳血管アミロイドアンギオパチー]]や老人斑の生化学的解析から、その主要構成成分として同定された40アミノ酸程度のペプチドである<ref><pubmed> 6375662 </pubmed></ref>。Aβ沈着が病理学的に捉えられる最初期病変であること、Aβが凝集し、直接神経細胞毒性を示しうること、そして家族性[[アルツハイマー病]]患者の遺伝学的解析から、Aβの産生および蓄積の異常が[[アルツハイマー病]]の発症に深く関係しているという「アミロイドカスケード仮説」が現在広く支持されている。 | |||
==産生== | ==産生== | ||
cDNAクローニングによりAβは前駆タンパク質である[[Amyloid-β precursor protein]]([[APP]])の部分断片であること、[[βセクレターゼ]]および[[γセクレターゼ]]による連続した二段階切断によって切りだされ、細胞外へと[[分泌]]されることが示された<ref><pubmed> 20139999 </pubmed></ref>。 | |||
一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。 | |||
APPのα、β切断によって細胞外領域が分泌されるが、このような現象は[[エクトドメインシェディング]]とも呼ばれ、様々な膜タンパク質において観察されている<ref><pubmed> 22991436 </pubmed></ref>。そしてシェディングによって生じる膜結合型の断片がさらに引き続いて膜内配列におけるγ切断をうけるI型膜貫通蛋白も多く知られており、APPファミリー分子の他にも[[Notch]]や[[Cadherin]]、[[CD44]]、[[Neuregulin]]、[[ErbB4]]、[[Alcadein]]、[[Neuroligin]]などがその切断を介して神経・グリア細胞の分化、[[神経可塑性]]や神経生存性に重要な役割を果たすことが示されている<ref><pubmed> 16630834 </pubmed></ref><ref><pubmed> 19038214 </pubmed></ref><ref><pubmed> 21865451 </pubmed></ref><ref><pubmed> 21982365 </pubmed></ref><ref><pubmed> 23083742 </pubmed></ref>。また一部の基質ではAβ様分泌ペプチドの産生が確認されている<ref><pubmed> 20049724 </pubmed></ref><ref><pubmed> 21681798 </pubmed></ref>。しかしその生理的機能は定かではなく、またAβ以外の分子が凝集能を示すことは報告されていない。また多くの場合、シェディングの役割は細胞表面膜に存在する基質の量を低下させることに寄与している。したがってAβが産生されるプロセスは比較的普遍的な膜タンパク質代謝の一つであり<ref><pubmed> 15173829 </pubmed></ref>、シェディングによって生じた膜結合型断片を分解する過程で生じた産物とも考えられる。 | |||
一方、γセクレターゼ切断によって放出される細胞質内領域が何らかの役割を果たしていることが多い。特に膜受容体型転写因子であるNotchは、近接する細胞に発現しているリガンドの結合を契機として[[ADAM10]]によりシェディングを受け、引き続きγセクレターゼによって転写活性化ドメインを含む細胞質内領域を放出し、遺伝子発現を調節している<ref><pubmed> 23028119 </pubmed></ref><ref><pubmed> 24099003 </pubmed></ref>。 | |||
==Aβの凝集性と沈着様式== | ==Aβの凝集性と沈着様式== | ||
Aβの特徴はその凝集性の高さであり、[[wikipedia:ja:|緩衝液]]中に高濃度で存在するだけで凝集してアミロイド線維を形成する。凝集したAβは分解抵抗性を示す。人工合成ペプチドを用いた解析から、その線維形成過程は主にAβの一次配列とアミノ酸長に依存することが示されている。特に産生時のγセクレターゼによる切断部位の多様性によって生じる最C末端長の違いが、生理的条件下で生じうるAβの凝集性を変化させる要因である。Aβの主な分子種として、第40番目のアミノ酸であるValで終わるAβ40、第42番目のアミノ酸であるAlaで終わるAβ42が知られている。通常、神経細胞からはAβ40がAβ42に比して10倍近く多く産生される<ref><pubmed> 7640283 </pubmed></ref>。 | |||
このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref> | このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref>も非常に疎水性が上がるため重要であると考えられている。そのためアルツハイマー病患者脳に老人斑として蓄積している最も主要なAβは、3番目の[[グルタミン酸]]がピログルタミル化し、最C末端が42番目のアラニンで終わっている分子種であると想定されている。 | ||
==家族性アルツハイマー病とAβ== | ==家族性アルツハイマー病とAβ== | ||
26行目: | 39行目: | ||
===総Aβ産生量を変化させる遺伝子変異=== | ===総Aβ産生量を変化させる遺伝子変異=== | ||
βセクレターゼ活性は[[ | βセクレターゼ活性は[[BACE1]]と呼ばれる[[膜結合型アスパラギン酸プロテアーゼ]]によって担われており、その切断が総Aβ産生量を規定している。βセクレターゼ切断部位近傍に存在するSwedish変異(KM670/671NL)<ref><pubmed> 1302033 </pubmed></ref>、Italian変異(A673V(Aβ配列としてA2V))<ref><pubmed> 19286555 </pubmed></ref>は、APPのBACE1に対する親和性を高め、総Aβ産生量を上昇させる。またβセクレターゼの切断部位にはAβ配列内にもう一つ存在し、β’切断部位と呼称されている。この切断はN末端が短いAβ産生につながるが、β’切断部位の変異であるLeuven変異(E682K(Aβ配列としてE11K))がβ’切断を抑制し、結果的に総Aβ産生量を増加させる効果を持つ<ref><pubmed> 21500352 </pubmed></ref>。 | ||
一方ごく最近、アイスランド国民の全ゲノムシーケンシング解析からアルツハイマー病および老化に伴う認知機能低下に対して防御的に作用するrare variantとしてAβ産生を40%低下させるIcelandic変異(A673T(Aβ配列としてA2T))が同定された<ref><pubmed> 22801501 </pubmed></ref>。この変異はβセクレターゼによる切断効率を低下させることが示されている。この変異はAβ産生量の変化がアルツハイマー病の発症リスクを規定していることを明確にしたと言える。 | 一方ごく最近、アイスランド国民の全ゲノムシーケンシング解析からアルツハイマー病および老化に伴う認知機能低下に対して防御的に作用するrare variantとしてAβ産生を40%低下させるIcelandic変異(A673T(Aβ配列としてA2T))が同定された<ref><pubmed> 22801501 </pubmed></ref>。この変異はβセクレターゼによる切断効率を低下させることが示されている。この変異はAβ産生量の変化がアルツハイマー病の発症リスクを規定していることを明確にしたと言える。 | ||
これまでにBACE1遺伝子変異は報告されていないが、アルツハイマー病患者脳や[[脳脊髄液]]中でBACE1タンパク質<ref><pubmed> 12514700 </pubmed></ref>や活性<ref><pubmed> 12223024 </pubmed></ref><ref><pubmed> 14978286 </pubmed></ref> | これまでにBACE1遺伝子変異は報告されていないが、アルツハイマー病患者脳や[[脳脊髄液]]中でBACE1タンパク質<ref><pubmed> 12514700 </pubmed></ref>や活性<ref><pubmed> 12223024 </pubmed></ref><ref><pubmed> 14978286 </pubmed></ref>の上昇が報告されている。すなわち、老化に伴うBACE1活性の変動が孤発性アルツハイマー病発症機序に影響を与えている可能性が示唆されている。また最近になり、神経細胞における主たるαセクレターゼであるADAM10の機能欠失型変異が見出され、非Aβ産生経路の抑制がアルツハイマー病を惹起することも示された<ref><pubmed> 24055016 </pubmed></ref>。 | ||
===凝集性の高いAβ42の産生比率を変化させる遺伝子変異=== | ===凝集性の高いAβ42の産生比率を変化させる遺伝子変異=== | ||
37行目: | 50行目: | ||
同様にAβのC末側に存在するIranian変異(T714A)、Austrian変異(T714I)、German変異(V715A)、French変異(V715M)、Florida変異(I716V)、Iberian変異(I716F)、London変異(V717Iの他、L、F、G)、Australian変異(L723P)、Belgian変異(K724N)などは、いずれもγセクレターゼによる切断を変化させ、総Aβ産生量には大きな影響を与えずに特に凝集性の高いAβ42の産生比率(総Aβ産生量に対する)を上昇させる。またFlemish変異(A692G(Aβ配列としてA21G))はAβ産生量を増大させる。これはA21を含む領域がAPPに存在するγセクレターゼ活性を抑制するドメインであり、Flemish変異はその抑制効果を低下させるため、Aβ産生量を増加させると考えられている<ref><pubmed> 20062056 </pubmed></ref>。 | 同様にAβのC末側に存在するIranian変異(T714A)、Austrian変異(T714I)、German変異(V715A)、French変異(V715M)、Florida変異(I716V)、Iberian変異(I716F)、London変異(V717Iの他、L、F、G)、Australian変異(L723P)、Belgian変異(K724N)などは、いずれもγセクレターゼによる切断を変化させ、総Aβ産生量には大きな影響を与えずに特に凝集性の高いAβ42の産生比率(総Aβ産生量に対する)を上昇させる。またFlemish変異(A692G(Aβ配列としてA21G))はAβ産生量を増大させる。これはA21を含む領域がAPPに存在するγセクレターゼ活性を抑制するドメインであり、Flemish変異はその抑制効果を低下させるため、Aβ産生量を増加させると考えられている<ref><pubmed> 20062056 </pubmed></ref>。 | ||
一方で、ほとんどのFADは[[Presenilin 1]]もしくは[[Presenilin 2|2]]遺伝子上の点突然変異に連鎖する。Presenlinはγセクレターゼの活性中心サブユニットであり、[[ニカストリン]]、[[Aph-1]]、[[Pen-2]]と膜タンパク複合体として機能する<ref><pubmed> 12660785 </pubmed></ref>。その遺伝子変異はほぼ全てAβ42産生比率を上昇させる。γセクレターゼは特殊な切断様式をとる膜内配列切断アスパラギン酸プロテアーゼ<ref><pubmed> 23585568 </pubmed></ref>であり、Presenilin遺伝子のFAD変異がどのような影響を及ぼしているかは未だ定かではないが、何れにせよいずれの変異もγセクレターゼによる切断様式を変化させ、Aβ42の産生比率を特異的に増加させることでアルツハイマー病の発症過程を促進していると考えられている。 | |||
βセクレターゼに対するIcelandic変異のように、γセクレターゼによるAβ42産生を抑制する変異は未だ見出されていないが、アルツハイマー病に関連する遺伝学的予防因子<i>PICALM</i><ref><pubmed> 24162737 </pubmed></ref>の発現量低下がγセクレターゼの細胞内輸送を変化させることでAβ42産生量を低下させることが報告されている。 | βセクレターゼに対するIcelandic変異のように、γセクレターゼによるAβ42産生を抑制する変異は未だ見出されていないが、アルツハイマー病に関連する遺伝学的予防因子<i>PICALM</i><ref><pubmed> 24162737 </pubmed></ref>の発現量低下がγセクレターゼの細胞内輸送を変化させることでAβ42産生量を低下させることが報告されている。 | ||
===Aβの凝集性を変化させる遺伝子変異=== | ===Aβの凝集性を変化させる遺伝子変異=== | ||
[[Image:TTfig3.PNG|thumb|350px|'''図3.Aβの凝集性を変化させる遺伝子変異'''<br>Aβ配列内部の変異は凝集性に影響を与える。]] | |||
Aβ配列内にも多くのFAD変異が存在し、多くの場合はAβの凝集性に大きな影響を与える。Aβ配列のN末端側にある変異は、British変異(H677R(Aβ配列としてH6R))、Tottori変異(D678N(Aβ配列としてD7N))そしてItalian変異(A673V(Aβ配列としてA2V))である。British変異およびTottori変異は、いずれもAβアミロイド線維形成を亢進させる<ref><pubmed> 17170111 </pubmed></ref>。Italian変異については、βセクレターゼによる切断を亢進させると同時に凝集性を高める<ref><pubmed> 19286555 </pubmed></ref>。 | |||
一方、Aβ配列の中央部に位置する変異としては、Arctic変異(E693G(Aβ配列としてE22G))、Osaka変異(ΔE693(Aβ配列としてΔE22))、Iowa変異(D694N(Aβ配列としてD23N))が存在する。Dutch変異(E693Q(Aβ配列としてE22Q))はオランダ型[[遺伝性アミロイド性脳出血]]に連鎖する変異として発見された。Dutch変異、Arctic変異ともに<i>in vitro</i>でアミロイド線維形成能が高いこと<ref><pubmed> 12944403 </pubmed></ref>が示されている。加えて、Arctic変異はAβ線維形成過程の中間段階で生じるプロトフィブリルの形成を亢進・安定化することが観察されている<ref><pubmed> 11528419 </pubmed></ref>。Osaka変異は、2008年に本邦より報告された比較的新しい変異である。興味深いことに、この変異をもつAβはアミロイド線維を形成せずオリゴマーの形で留まり、シナプス毒性を示す<ref><pubmed> 18300294 </pubmed></ref>。 | |||
==Aβの分解== | ==Aβの分解== | ||
生理的条件下ではAβは[[ネプリライシン]]などの酵素により分解されるため、脳内でのAβの半減期は30分程度である<ref><pubmed> 19741145 </pubmed></ref> | 生理的条件下ではAβは[[ネプリライシン]]などの酵素により分解されるため、脳内でのAβの半減期は30分程度である<ref><pubmed> 19741145 </pubmed></ref>。その他にも[[インスリン分解酵素]]や、プラスミン、エンドセリン変換酵素、カテプシン、KLK7、MMPなどがAβ分解酵素として同定されている。Aβはグリア細胞による貪食を受けることも知られている。さらに血管内皮細胞を介したトランスエンドサイトーシスによって排出される可能性も示唆されている。アルツハイマー病の遺伝学的リスク因子として最も強い[[wikipedia:en: Apolipoprotein_E|Apolipoprotein E]]はAβ分解システムに関与している<ref><pubmed> 18549781 </pubmed></ref><ref><pubmed> 21715678 </pubmed></ref>ことが示唆されている他、孤発性アルツハイマー病患者においてはAβクリアランス速度が有意に低下している<ref><pubmed> 21148344 </pubmed></ref>ことが示されており、Aβ分解・代謝経路の全容解明が待たれている。 | ||
==脳内Aβ濃度を保つシステムと機能== | ==脳内Aβ濃度を保つシステムと機能== |