66
回編集
Hanakohayashi (トーク | 投稿記録) 細編集の要約なし |
Hanakohayashi (トーク | 投稿記録) 細 (→脳におけるカテニンの機能) |
||
167行目: | 167行目: | ||
シナプスは、神経回路内の情報伝達の場である。樹状突起表面にはスパインという突起構造が無数にあり、スパイン上ではシナプスが形成されている。シナプスを介した情報伝達に伴ってスパインの形態変化が見られ、それはシナプス形成やシナプス可塑性に関わると考えられている。スパインを形づくる主要な細胞骨格はアクチン線維であり、そこでのアクチン動態はスパインの運動性や形態を動的に変化させ、複数のアクチン結合タンパク質によってそのアクチン動態が制御されている。α–カテニンはスパインの安定化に働いている。αN–カテニン欠損マウスから得られた海馬の神経培養細胞では、N–カドヘリンやβ–カテニンは他のスパインマーカーとともにスパインに局在するが、スパインの形態やその時間変化に異常がみられ、安定的なシナプス構造が維持できない。一方で、αN–カテニンの過剰発現によって、樹状突起上のスパインの数の増加、さらにはスパインのターンオーバーが低下する。これらには、αN–カテニンのN末とC末の領域が必要であり、ここでもN–カドヘリン・β–カテニン・αN–カテニン、そしてアクチン線維が一連に繋がることが必須であることが示唆されている。 | シナプスは、神経回路内の情報伝達の場である。樹状突起表面にはスパインという突起構造が無数にあり、スパイン上ではシナプスが形成されている。シナプスを介した情報伝達に伴ってスパインの形態変化が見られ、それはシナプス形成やシナプス可塑性に関わると考えられている。スパインを形づくる主要な細胞骨格はアクチン線維であり、そこでのアクチン動態はスパインの運動性や形態を動的に変化させ、複数のアクチン結合タンパク質によってそのアクチン動態が制御されている。α–カテニンはスパインの安定化に働いている。αN–カテニン欠損マウスから得られた海馬の神経培養細胞では、N–カドヘリンやβ–カテニンは他のスパインマーカーとともにスパインに局在するが、スパインの形態やその時間変化に異常がみられ、安定的なシナプス構造が維持できない。一方で、αN–カテニンの過剰発現によって、樹状突起上のスパインの数の増加、さらにはスパインのターンオーバーが低下する。これらには、αN–カテニンのN末とC末の領域が必要であり、ここでもN–カドヘリン・β–カテニン・αN–カテニン、そしてアクチン線維が一連に繋がることが必須であることが示唆されている。 | ||
スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な糸状仮足様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、マッシュルーム型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]をブロックすることで、興奮性の活動電位を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスからαN–カテニンが消失する。αN–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref | スパインのシナプス周辺領域では、N–カドヘリン・カテニン複合体による接着構造が形成され、シナプスの安定化に寄与していると考えられる。樹状突起と軸索とがシナプスを形成する際、スパインはもともと動的な糸状仮足様の構造をとっているが、[[軸索]]からの[[活動電位]]が伝わり、[[シナプス後膜]]が興奮性の活動電位を示すようになると、マッシュルーム型の構造へと変化し、安定化する。逆に、[[ナトリウムチャネル]]をブロックすることで、興奮性の活動電位を阻害すると、スパインは安定的な構造から動的な糸状仮足のような構造へと変化する。それと同時に、シナプスからαN–カテニンが消失する。αN–カテニンの過剰発現により、このナトリウムチャネル阻害依存的なスパインの形態変化が緩和される<ref ><pubmed> 12123610 </pubmed></ref><ref><pubmed> 14622577 </pubmed></ref><ref><pubmed> 15034585 </pubmed></ref>。このように神経活動によってシナプス接合部においてカドヘリン・カテニン、そして細胞骨格の連結が制御を受け、その結果としてシナプス構造やその安定性の変化、そしてシナプス伝達の制御に寄与しているという考えが提唱されている<ref><pubmed> 15817378 </pubmed></ref>。変異型β–カテニンを発現させたマウスの海馬から分離した神経培養細胞では、活性化された[[シナプス前膜]]直下に集積している[[シナプス小胞]]の数の維持にβ–カテニンが重要であることが示された。ここでは、α–カテニンとの結合領域は必要ないので、β–カテニンが細胞接着構造を制御することだけに寄与しているのではないと考えられる<ref><pubmed> 14622577 </pubmed></ref>。加えて、[[細胞接着]]やWnt/β–カテニンシグナル伝達経路とは別に、β–カテニンの新たなシグナル伝達経路が神経情報伝達において利用されていることが、[[神経初代培養細胞]]の解析から明らかになった。[[NMDA型グルタミン受容体]]が活性化すると、Wntとは関係なく、β–カテニンが切断され、その後はWnt/β–カテニンシグナル伝達経路と同様に核で機能する<ref><pubmed> 17270735 </pubmed></ref>。p120–カテニンによる[[RhoA]]活性の抑制は、樹状突起上のスパインの密度の維持に寄与する<ref ><pubmed> 16815331 </pubmed></ref>。一方で、N–カドヘリンとp120–カテニンとの複合体の構造解析によって明らかになった両者の結合に重要なアミノ酸残基についての点変異体を発現させた海馬の神経培養細胞では、p120–カテニンがN–カドヘリンと結合できず、スパインの密度やスパインの幅が減少する<ref><pubmed> 22535893</pubmed></ref>。δ–カテニンはスパインのサイズや数、形態の維持に必要である<ref><pubmed>15489912</pubmed></ref>。 | ||
===大脳皮質のサイズ制御=== | ===大脳皮質のサイズ制御=== |
回編集