16,039
回編集
細編集の要約なし |
細 (→p120-カテニンの発見) |
||
22行目: | 22行目: | ||
=== p120-カテニンの発見=== | === p120-カテニンの発見=== | ||
p120-カテニンは、[[src]]による形質転換特異的にみられる[[チロシンリン酸化|チロシン残基のリン酸化]]をうける分子としてReynoldsらによって同定されており、アクチン細胞骨格動態への影響が見られていたこともあり、細胞/細胞外基質間接着との関連性についての解析も展開されていった<ref name=ref5><pubmed> 17175391 </pubmed></ref> | p120-カテニンは、[[src]]による形質転換特異的にみられる[[チロシンリン酸化|チロシン残基のリン酸化]]をうける分子としてReynoldsらによって同定されており、アクチン細胞骨格動態への影響が見られていたこともあり、細胞/細胞外基質間接着との関連性についての解析も展開されていった<ref name=ref5><pubmed> 17175391 </pubmed></ref>。そのような流れの中で、細胞接着だけでなく、発生・再生における遺伝子発現制御因子としての重要性が示されている(図2)。同じp120-カテニンファミリータンパク質であるδ–カテニンは[[家族性アルツハイマー病]]の原因遺伝子である[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref46><pubmed> 9172160 </pubmed></ref>。タンパク質の一次構造レベルでは、β–カテニンとp120-カテニンはアルマジロ反復配列を有するタンパク質として類似性を示し、その配列はさまざまな因子の結合領域として働く(図3)<ref name=ref2><pubmed> 20164302 </pubmed></ref>。 | ||
このようにカテニン分子は細胞間接着という共通の機能を担う一方で、分子としての性質は多様であり、その性質が各々のカテニン分子の多機能性を生み出していると考えられている。 | このようにカテニン分子は細胞間接着という共通の機能を担う一方で、分子としての性質は多様であり、その性質が各々のカテニン分子の多機能性を生み出していると考えられている。 |