16,040
回編集
細 (→神経伝達物質受容体の発現) |
細 (→アストロサイト) |
||
28行目: | 28行目: | ||
==アストロサイト== | ==アストロサイト== | ||
[[ファイル:Kudo Fig2.png|thumb|right|350px|'''図2.アストロサイトの形態'''<br>'''A.''' | [[ファイル:Kudo Fig2.png|thumb|right|350px|'''図2.アストロサイトの形態'''<br>'''A.''' GFAP抗体で標識したアストロサイト(脳スライス培養標本)(著者原図)(編集コメント:スケールバーをお願いします)<br>'''B.''' ゴルジ染色されたアストロサイト(超高圧電子顕微鏡による立体画像)(濱 清先生提供)]] | ||
=== 名称と形態の特徴 === | === 名称と形態の特徴 === | ||
91行目: | 91行目: | ||
ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]](calcium imaging)法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる[[蛍光カルシウム指示薬]]を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。 | ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]](calcium imaging)法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる[[蛍光カルシウム指示薬]]を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。 | ||
この方法を使って、アストログリアのクローン細胞にセロトニンに対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養細胞を用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref> | この方法を使って、アストログリアのクローン細胞にセロトニンに対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養細胞を用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref>。それに前後して、アセチルコリン、ヒスタミン、ATP、ノルアドレナリン、ドーパミン、セロトニンに対してもアストロサイトが同様なカルシウム応答反応を生ずることが報告されている。この反応は細胞の一点で見ると反復性律動的反応(カルシウムカルシウムオシレーション:calcium oscillation)として観察できる(図6)二次元的に観察すると、細胞内で反応が波状に広がるばかりか、周辺のアストロサイトにも波状に伝搬していることがわかる(カルシウムウエーブ)<ref><pubmed>1647876</pubmed></ref>(動画1)。その伝搬速度は神経活動に比べると数オーダー遅い。しかし、この発見はそれまで不活性であり、脳のダイナミックな機能には寄与しないだろうと考えられていたアストロサイトが脳機能発現に積極的関与する可能性を示唆する重要な発見である。 | ||
====グリア伝達物質の遊離==== | ====グリア伝達物質の遊離==== | ||
[[ファイル:Kudo Fig7.png|thumb|right|350px|'''図7.グリオトランスミッターとトライパータイトシナプスの概念'''<br>ニューロンの終末(①)とスパイン(②)の間でのシナプス情報伝達に加えて、そのシナプスを包むアストロサイト(③)とニューロン間の情報伝達調節機構が組み込まれたシステム取り入れた概念。アストロサイトから遊離さる伝達物質はグリオトランスミッターと呼ばれる。]] | [[ファイル:Kudo Fig7.png|thumb|right|350px|'''図7.グリオトランスミッターとトライパータイトシナプスの概念'''<br>ニューロンの終末(①)とスパイン(②)の間でのシナプス情報伝達に加えて、そのシナプスを包むアストロサイト(③)とニューロン間の情報伝達調節機構が組み込まれたシステム取り入れた概念。アストロサイトから遊離さる伝達物質はグリオトランスミッターと呼ばれる。]] | ||
アストロサイトが[[モノアミン]]刺激によってGABAやグルタミン酸を遊離できることは、カルシウム濃度上昇の発見以前に報告されていた<ref><pubmed>3005511</pubmed></ref> <ref><pubmed>2575232</pubmed></ref> | アストロサイトが[[モノアミン]]刺激によってGABAやグルタミン酸を遊離できることは、カルシウム濃度上昇の発見以前に報告されていた<ref><pubmed>3005511</pubmed></ref> <ref><pubmed>2575232</pubmed></ref>。このような神経伝達物質遊離がカルシウムの上昇によって引き起されるか、またそれによって周辺のニューロンに影響を与えることができるのかの証拠があれば、ニューロンからアストロサイトへの情報伝達ばかりではなく、アストロサイトからニューロンへの[[逆行性情報伝達]]が証明できる。この点も比較的簡単にクリアされた。アストロサイトにおけるカルシウム濃度上昇がグルタミン酸 、ATP、[[D-セリン]]などの分子を遊離できること、これらの分子が直接的にも間接的にもニューロンの活性に影響を与えることが証明されている(図7)<ref><pubmed>12927771</pubmed></ref>。 | ||
グルタミン酸(glutamate)は脳内のシナプスの70%で興奮性伝達物質として使われている分子である。従って、これを遊離できることはアストロサイトから周辺のシナプスに情報を伝達できることを意味する。 | グルタミン酸(glutamate)は脳内のシナプスの70%で興奮性伝達物質として使われている分子である。従って、これを遊離できることはアストロサイトから周辺のシナプスに情報を伝達できることを意味する。 | ||
もう一つ重要な分子がATP(adenosine | もう一つ重要な分子がATP(adenosine triphosphate)である。アストロサイトがATPを遊離できることはアストロサイト特異的培養系で、ATP測定をすることによって証明される。ATPはそのものが神経伝達物質の一つして認められており、ニューロンには7種の[[イオンチャンネル型]]の[[P2X受容体]]と8種のG-タンパク質共役型のP2Y型が分布していることが認められている。一方、アストロサイトにはイオンチャンネル型[[P2X受容体]]とG-タンパク質共役型の[[P2Y1]]、[[P2Y2]]、[[P2Y4]]を発現しているので、ATPに対する感受性が高く、カルシウムイメージング法でその効果を容易に確かめることができる<ref><pubmed>12420311</pubmed></ref>。 | ||
さらに、もう一つ重要な物質の遊離がある。D-セリンである。D-セリンはL-セリンから[[セリン異性化酵素]](serine racemase)によって合成される。このアミノ酸はグルタミン酸受容体のサブタイプの一つである[[ | さらに、もう一つ重要な物質の遊離がある。D-セリンである。D-セリンはL-セリンから[[セリン異性化酵素]](serine racemase)によって合成される。このアミノ酸はグルタミン酸受容体のサブタイプの一つである[[NMDA型グルタミン酸受容体]]の[[コアゴニスト]]の一つである。このNMDA型グルタミン酸受容体は細胞内にカルシウム流入を引き起こし、シナプス可塑性で重要な役割を果たしている。アストロサイトはセリン異性化酵素をもっており、D-セリンを遊離する<ref><pubmed>9892700</pubmed></ref>。最近はニューロンもD-セリンを産生することができると報告されており、この機能がアストロサイトの特異的機能であることには疑問があるが<ref><pubmed>17663143</pubmed></ref>、グリア細胞から遊離されたD-セリンがニューロンのNMDA型グルタミン酸受容体に促進的作用を受けもっていることは確からしい。このような分子は[[グリオトランスミッター]](gliotransmitters)と呼ばれている<ref><pubmed>17006901</pubmed></ref>。 | ||
====トライパータイトシナプス==== | ====トライパータイトシナプス==== | ||
グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えた[[ | グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えた[[三者間シナプス]](トライパータイトシナプス]]; tripartite synapse)という概念である<ref><pubmed>10322493</pubmed></ref>。これまでに述べたアストロサイトの性質を考えれば当然あって然るべき仕組みである。このようなシナプスの存在を考慮に入れて脳における情報処理を考えると、これまでにニューロンのみで作られる回路の上で考えていた脳機能はもっと複雑で奥深いものになる(図7)。 | ||
====シナプス可塑性に及ぼす役割==== | ====シナプス可塑性に及ぼす役割==== | ||
すでに述べたようにアストロサイトには細かく枝分かれし、シート状の突起([[ラメラ]]:lamella)を持つ樹状突起と、血管に巻き付く突起があり、そのラメラはニューロンの樹状突起上のシナプス構造を包み込んでいる。この構造はアストロサイトがシナプスをサポートしていることを示唆している。 また、海馬スライス培養標本において、アストロサイトを[[緑色蛍光タンパク質]](GFP)で、ニューロンをrhodamine-dextranで標識して、[[二光子顕微鏡]]で[[ | すでに述べたようにアストロサイトには細かく枝分かれし、シート状の突起([[ラメラ]]:lamella)を持つ樹状突起と、血管に巻き付く突起があり、そのラメラはニューロンの樹状突起上のシナプス構造を包み込んでいる。この構造はアストロサイトがシナプスをサポートしていることを示唆している。 また、海馬スライス培養標本において、アストロサイトを[[緑色蛍光タンパク質]](GFP)で、ニューロンをrhodamine-dextranで標識して、[[二光子顕微鏡]]で[[経時観察]]した結果、アストロサイトと接触したシナプスの寿命は接触しなかったシナプスに比較して有意に長く、成熟型のシナプスに移行していくことが証明されている<ref><pubmed>17215394</pubmed></ref>この事実はおそらくシナプス可塑性にはアストロサイトの存在が重要であることを示唆しており、ますますアストロサイトの重要性が高まっている。 | ||
==オリゴデンドロサイト== | ==オリゴデンドロサイト== |