「カテニン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
148行目: 148行目:
 F9細胞では&beta;–カテニンをノックアウトしてもプラコグロビンの発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;–カテニンとを融合したタンパク質を発現させれば、&beta;–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンが&beta;–カテニンの機能を補完する役割を担っており、また&beta;–カテニンの機能は、&alpha;–カテニンをカドヘリンに結合させることであることを示している。
 F9細胞では&beta;–カテニンをノックアウトしてもプラコグロビンの発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;–カテニンとを融合したタンパク質を発現させれば、&beta;–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンが&beta;–カテニンの機能を補完する役割を担っており、また&beta;–カテニンの機能は、&alpha;–カテニンをカドヘリンに結合させることであることを示している。


 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)(コメントH3)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面(極性をもつ細胞の頂端と基底部分の間に位置し、隣り合う細胞膜(ラテラル膜)がなす面)(コメントH3)でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、接着結合とデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織では接着結合の構成因子とデスモソームの構成因子とが混在した状態でラテラル面(コメントH3)に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
====転写制御====
====転写制御====
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。
 &beta;–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。
165行目: 165行目:
===機能===
===機能===
====細胞膜上カドヘリン量の維持====
====細胞膜上カドヘリン量の維持====
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つあるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。
 p120–カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンの[[チロシンリン酸化]]はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref23><pubmed> 20371349 </pubmed></ref> <ref name=ref24><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref25><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つであるが<ref name=ref25><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref26><pubmed> 12492499 </pubmed></ref>。


====細胞膜直下アクチン線維動態の制御====
====細胞膜直下アクチン線維動態の制御====
189行目: 189行目:
 神経発生時には、神経管の[[脳室]]側で未分化細胞が分裂し、表層方向へと移動し、適材適所に細胞が多種のニューロンへと分化し、その種類ごとに住みわけるように脳室面から表層方向に層構造を形成する。ニューロンはネットワークを形成し、神経活動を伝達する。&alpha;N–カテニンの欠損マウスでは小脳や海馬において層構造の形成がうまくいかない<ref name=ref35><pubmed> 12089526 </pubmed></ref>。
 神経発生時には、神経管の[[脳室]]側で未分化細胞が分裂し、表層方向へと移動し、適材適所に細胞が多種のニューロンへと分化し、その種類ごとに住みわけるように脳室面から表層方向に層構造を形成する。ニューロンはネットワークを形成し、神経活動を伝達する。&alpha;N–カテニンの欠損マウスでは小脳や海馬において層構造の形成がうまくいかない<ref name=ref35><pubmed> 12089526 </pubmed></ref>。


 中枢神経系の幹/前駆細胞特異的に&alpha;E–カテニンを欠失させると、細胞間接着が形成できず、さらに[[細胞極性]]がなくなる。加えて、細胞数の増加、[[細胞周期]]の短縮、[[アポトーシス]]の減少がみられ、最終的な[[大脳皮質]]の厚みや大きさが増す。このノックアウト細胞では、[[大脳皮質の発生]]過程において細胞増殖を促進する[[ソニックヘッジホッグ]]シグナル伝達経路が強く活性化している。ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E–カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E–カテニンの接着構造の制御自体だけでなく、複数のシグナル伝達系を仲介するという新たな機能であると議論されている<ref name=ref45><pubmed> 16543460 </pubmed></ref>。(コメント:この段落はこちらに持ってきました)
 中枢神経系の幹/前駆細胞特異的に&alpha;E–カテニンを欠失させると、細胞間接着が形成できず、さらに[[細胞極性]]がなくなる。加えて、細胞数の増加、[[細胞周期]]の短縮、[[アポトーシス]]の減少がみられ、最終的な[[大脳皮質]]の厚みや大きさが増す。このノックアウト細胞では、[[大脳皮質の発生]]過程において細胞増殖を促進する[[ソニックヘッジホッグ]]シグナル伝達経路が強く活性化している。ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E–カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E–カテニンが細胞間接着構造への制御を担うだけでなく、複数のシグナル伝達系を仲介した新たな機能をもつと議論されている<ref name=ref45><pubmed> 16543460 </pubmed></ref>。(コメント:この段落はこちらに持ってきました。コメントH4:言い方を少し変えました。)


 [[ゼブラフィッシュ]]の中脳では、Wnt/&beta;–カテニンシグナル伝達系が[[中脳視蓋]]のサイズの制御に寄与していることが示されている。[[LEF]]による転写が活性化すると、中脳領域での神経前駆細胞の増殖が促進する。その転写活性の制御が神経前駆細胞の増殖制御を介して中脳視蓋の大きさに影響をもたらすのではないかと考えられている<ref name=ref36><pubmed> 22373574 </pubmed></ref>。
 [[ゼブラフィッシュ]]の中脳では、Wnt/&beta;–カテニンシグナル伝達系が[[中脳視蓋]]のサイズの制御に寄与していることが示されている。[[LEF]]による転写が活性化すると、中脳領域での神経前駆細胞の増殖が促進する。その転写活性の制御が神経前駆細胞の増殖制御を介して中脳視蓋の大きさに影響をもたらすのではないかと考えられている<ref name=ref36><pubmed> 22373574 </pubmed></ref>。
66

回編集

案内メニュー