「グリア細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
英語名:glial cell 独:Gliazelle 仏:cellule gliale
英語名:glial cell 独:Gliazelle 仏:cellule gliale


同義語:膠細胞、神経膠細胞
同義語:[[膠細胞]]、[[神経膠細胞]]


{{box|text= 脳に分布する主なグリア細胞は[[アストロサイト]]、[[オリゴデンドロサイト]]および[[ミクログリア]]の三種に分類される。[[ヒト]]の脳におけるこれらグリア細胞全体の数は[[ニューロン]]の数を遙かに上回る。しかし、電気的には不活性なこれらの細胞の[[中枢神経系]]における機能は発見以来、長い間、過小評価されてきた。もちろん、アストロサイトについては、神経伝達物質の取り込み、シナプス周辺のイオン環境の維持、血液能関門としての役割など受動的ではあるが重要な役割はすでに認められていた。また、オリゴデンドロサイトについては髄鞘の形成による活動電位の伝導速度促進、ミクログリアについては損傷を受けたニューロンの除去や修復機能など多様な機能は認められていた。しかし、20世紀後半から細胞内カルシウム濃度研究法や二光子レーザー顕微鏡などの技術によりグリア細胞の新しい側面が浮き彫りにされてきた。この中には、アストロサイトが多様な神経伝達物質受容体を発現し、ニューロンの活動に応答して、自らも伝達物質を遊離することによってニューロン活動を修飾すること。オリゴデンドロサイトが形成する髄鞘は神経活動に応じて拡大すること。さらに、ミクログリアがシナプスの再編成に積極的関与することなどグリア細胞が高次機能発現に関与する可能性を示す発見が多い。これらの事実はこれまでのようなニューロン中心の研究では脳機能の全貌を解き明かすことは困難であることを意味している。}}
{{box|text= 脳に分布する主なグリア細胞は[[アストロサイト]]、[[オリゴデンドロサイト]]および[[ミクログリア]]の三種に分類される。[[ヒト]]の脳におけるこれらグリア細胞全体の数は[[ニューロン]]の数を遙かに上回る。しかし、電気的には不活性なこれらの細胞の[[中枢神経系]]における機能は発見以来、長い間、過小評価されてきた。もちろん、アストロサイトについては、神経伝達物質の取り込み、[[シナプス]]周辺の[[イオン]]環境の維持、[[血液脳関門]]としての役割など受動的ではあるが重要な役割はすでに認められていた。また、オリゴデンドロサイトについては[[髄鞘]]の形成による[[活動電位]]の伝導速度促進、[[ミクログリア]]については損傷を受けたニューロンの除去や修復機能など多様な機能は認められていた。しかし、20世紀後半から細胞内[[カルシウム]]濃度研究法や[[二光子レーザー顕微鏡]]などの技術によりグリア細胞の新しい側面が浮き彫りにされてきた。この中には、アストロサイトが多様な[[神経伝達物質]][[受容体]]を発現し、ニューロンの活動に応答して、自らも伝達物質を遊離することによってニューロン活動を修飾すること。オリゴデンドロサイトが形成する髄鞘は神経活動に応じて拡大すること。さらに、ミクログリアがシナプスの再編成に積極的関与することなどグリア細胞が高次機能発現に関与する可能性を示す発見が多い。これらの事実はこれまでのようなニューロン中心の研究では脳機能の全貌を解き明かすことは困難であることを意味している。}}


==発見==
==発見==
 グリア細胞のgliaはニューロンとニューロンの間の空間を埋める糊やセメントのような物質という意味のNervenkittが語源となっている。病理学者の[[wj:ルドルフ・ルートヴィヒ・カール・ウィルヒョー|ルドルフ・ウイルヒョー]](Rudolph Virchow)が1846年に発表した論文に記載されている当時の[[組織染色]]技術では細胞の形を捉えることができなかったので、とりあえず、「神経の間を埋める何らかの物質」というような意味としての定義したのだろう。ウイルヒョーはやがてこれが細胞であることをつきとめて、細胞病理学の教科書には結合組織細胞と記載している(1858年)。その後、[[w:Otto Deiters|オットー・ダイテルス]](Otto Deiters) 、[[w:Mihály Lenhossék|ミカエル・レンホサック]](Michael von Lenhossék)、[[w:Wilhelm His, Sr.|ウイルヘルム・ヒス]](Wilhelm His)など19世紀末に活躍した多くの著名な神経組織学者がこの細胞の存在に興味を持ち、多様な形態や脳内分布の特徴を報告している。英語ではneurogliaと訳され、日本語では「膠(こう)細胞」(膠(にかわ)とはコラーゲンを原料とする接着剤)と訳される。
 [[グリア]]細胞のgliaはニューロンとニューロンの間の空間を埋める糊やセメントのような物質という意味のNervenkittが語源となっている。病理学者の[[wj:ルドルフ・ルートヴィヒ・カール・ウィルヒョー|ルドルフ・ウイルヒョー]](Rudolph Virchow)が1846年に発表した論文に記載されている当時の[[組織染色]]技術では細胞の形を捉えることができなかったので、とりあえず、「神経の間を埋める何らかの物質」というような意味としての定義したのだろう。ウイルヒョーはやがてこれが細胞であることをつきとめて、細胞病理学の教科書には[[結合組織]]細胞と記載している(1858年)。その後、[[w:Otto Deiters|オットー・ダイテルス]](Otto Deiters) 、[[w:Mihály Lenhossék|ミカエル・レンホサック]](Michael von Lenhossék)、[[w:Wilhelm His, Sr.|ウイルヘルム・ヒス]](Wilhelm His)など19世紀末に活躍した多くの著名な神経組織学者がこの細胞の存在に興味を持ち、多様な形態や脳内分布の特徴を報告している。英語ではneurogliaと訳され、日本語では「膠(こう)細胞」(膠(にかわ)とはコラーゲンを原料とする接着剤)と訳される。


 やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、[[wj:カミッロ・ゴルジ|カミロ・ゴルジ]](Camillo Golgi)が確立した[[ゴルジ染色]]法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte、またはアストログリア、astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのが[[wj:サンティアゴ・ラモン・イ・カハール|ラモン・イ・カハール]](Santiago Ramon y Cajal)である。ゴルジ染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、[[w:Pío del Río Hortega|ピオ・デル・リオ-オルテガ]](Pío del Río Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]](oligodendrocyte、または[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]](microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、[[大グリア細胞]](macroglia、アストロサイトとオリゴデンドロサイト)と、[[小グリア細胞]](microglia:ミクログリア)に分類されている。
 やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、[[wj:カミッロ・ゴルジ|カミロ・ゴルジ]](Camillo Golgi)が確立した[[ゴルジ染色]]法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte、またはアストログリア、astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのが[[wj:サンティアゴ・ラモン・イ・カハール|ラモン・イ・カハール]](Santiago Ramon y Cajal)である。[[ゴルジ]]染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、[[w:Pío del Río Hortega|ピオ・デル・リオ-オルテガ]](Pío del Río Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]](oligodendrocyte、または[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]](microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、[[大グリア細胞]](macroglia、アストロサイトとオリゴデンドロサイト)と、[[小グリア細胞]](microglia:ミクログリア)に分類されている。


 存在部位や機能によってその形態には多様性があり、それぞれが持つ特異的[[w:抗原|抗原]]分子によって分類される。現在は脳の第二の主役と呼ばれるほどに機能の重要さが注目されるようになってきている。多くのグリア細胞に関する叢書の序論には[[ヒト]]の脳におけるグリア細胞脳存在量はニューロンの10倍近くと述べられているが、その根拠は曖昧である。しかし、[[哺乳動物]]の脳におけるグリア細胞の分布比は脳が発達に伴って高くなっており<ref><pubmed>4945394</pubmed></ref>、また、他の[[霊長類]]([[チンパンジー]]や[[ゴリラ]]など)と比較しても高いことが明らかにされているので、脳の進化とグリア細胞の数には何らかの相関がある可能性は高い<ref><pubmed>16938869</pubmed></ref>。
 存在部位や機能によってその形態には多様性があり、それぞれが持つ特異的[[w:抗原|抗原]]分子によって分類される。現在は脳の第二の主役と呼ばれるほどに機能の重要さが注目されるようになってきている。多くのグリア細胞に関する叢書の序論には[[ヒト]]の脳におけるグリア細胞脳存在量はニューロンの10倍近くと述べられているが、その根拠は曖昧である。しかし、[[哺乳動物]]の脳におけるグリア細胞の分布比は脳が発達に伴って高くなっており<ref><pubmed>4945394</pubmed></ref>、また、他の[[霊長類]]([[チンパンジー]]や[[ゴリラ]]など)と比較しても高いことが明らかにされているので、脳の進化とグリア細胞の数には何らかの相関がある可能性は高い<ref><pubmed>16938869</pubmed></ref>。
36行目: 36行目:


====同種の細胞====
====同種の細胞====
 アストロサイトの同種と考えられる細胞は [[小脳]]の[[バーグマン細胞]](Bergmann glia)、[[網膜]]に分布する[[ミュラー細胞]](Müller cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。
 アストロサイトの同種と考えられる細胞は [[小脳]]の[[バーグマン細胞]](Bergmann glia)、[[網膜]]に分布する[[ミュラー細胞]]([[Müller]] cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。


====マーカー分子====
====マーカー分子====
42行目: 42行目:


====ヒト脳における分布量====  
====ヒト脳における分布量====  
 ヒトの大脳皮質においてはニューロンの1.4倍ほど分布していると推定されている。これはラットやマウスの5倍に及ぶとされている<ref><pubmed>14522144</pubmed></ref>。しかし、高次機能におけるアストロサイトの重要性を主張するにはあまりインパクトのない分布量の差である。しかし、この数よりも上述のようなヒトのアストロサイトがラットのそれより27倍も大きな空間を占めるという点に注目すべきであろう。ヒトでは一個のアストロサイトが200万個以上のシナプスを被い、それがラットの5倍も存在するのだから、脳機能の進化との関連性を強く示唆すると考えることに異論はないだろう。[[wj:アインシュタイン|アインシュタイン]]の脳ではニューロンに対するアストロサイトの量が多かったという報告もある<ref><pubmed>3979509</pubmed></ref>。もちろん、同年齢の健康なヒトの脳のデータとの比較であるが、有意差を求めることは難しい。しかし、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性を支持する証拠の一つである。
 ヒトの大脳皮質においてはニューロンの1.4倍ほど分布していると推定されている。これはラットや[[マウス]]の5倍に及ぶとされている<ref><pubmed>14522144</pubmed></ref>。しかし、高次機能におけるアストロサイトの重要性を主張するにはあまりインパクトのない分布量の差である。しかし、この数よりも上述のようなヒトのアストロサイトがラットのそれより27倍も大きな空間を占めるという点に注目すべきであろう。ヒトでは一個のアストロサイトが200万個以上のシナプスを被い、それがラットの5倍も存在するのだから、脳機能の進化との関連性を強く示唆すると考えることに異論はないだろう。[[wj:アインシュタイン|アインシュタイン]]の脳ではニューロンに対するアストロサイトの量が多かったという報告もある<ref><pubmed>3979509</pubmed></ref>。もちろん、同年齢の健康なヒトの脳のデータとの比較であるが、有意差を求めることは難しい。しかし、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性を支持する証拠の一つである。


===機能===
===機能===
48行目: 48行目:
]]
]]
====脳の機能的構造維持====
====脳の機能的構造維持====
 前述のようにアストロサイトは沢山の突起を伸ばし、その先端をシート状にひろげ、まるでスポンジのような形をしている。脳の灰白質の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は[[wj:血管|血管]]に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。すなわち、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが作るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。
 前述のようにアストロサイトは沢山の突起を伸ばし、その先端をシート状にひろげ、まるでスポンジのような形をしている。脳の[[灰白質]]の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は[[wj:血管|血管]]に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。すなわち、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが作るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。


====細胞外イオン環境の調節====
====細胞外イオン環境の調節====
64行目: 64行目:


====神経伝達物質の取り込み====
====神経伝達物質の取り込み====
 神経信号の伝達の際にシナプス周辺には[[神経伝達物質]]が大量に放出される。信号伝達後、過剰な伝達物質は早急にシナプス部位から排除されることが必要である。[[アセチルコリン]]や[[ATP]]は特異的分解酵素によって速やかに排除される。しかし、中枢神経系の約70%シナプスにおいて興奮性神経伝達物質して機能している[[グルタミン酸]]をはじめとして、多くの伝達物質は特異的[[トランスポーター]]によってシナプス周辺から除去される(図4)。グルタミン酸は[[興奮性アミノ酸トランスポーター]](Excitatory amino acid transporter: EAAT)により取り込まれる。興奮性アミノ酸トランスポーターはニューロンにも存在するが、アストロサイトに発現する[[EAAT1]]([[Glutamate aspartate transporter]]、[[GLAST]])と[[EAAT2]]([[Glutamate transporter-1]]、[[GLT-1]])が主なグルタミン酸取り込み経路となっている。これらのトランスポーターは細胞内外のイオン濃度勾配を利用してグルタミン酸を輸送する。グルタミン酸一分子の取り込みには2 - 3個のNa<sup>+</sup>イオンと1個のH<sup>+</sup>イオンが共輸送され、1個のK<sup>+</sup>イオンが排出される(図4)。結果として、この取り込みの際にはアストロサイトは脱分極する([[起電性トランスポーター]])<ref><pubmed>21752877</pubmed></ref>。
 神経信号の伝達の際にシナプス周辺には[[神経伝達物質]]が大量に放出される。信号伝達後、過剰な伝達物質は早急にシナプス部位から排除されることが必要である。[[アセチルコリン]]や[[ATP]]は特異的分解酵素によって速やかに排除される。しかし、中枢神経系の約70%シナプスにおいて[[興奮性]]神経伝達物質して機能している[[グルタミン酸]]をはじめとして、多くの伝達物質は特異的[[トランスポーター]]によってシナプス周辺から除去される(図4)。グルタミン酸は[[興奮性アミノ酸トランスポーター]](Excitatory amino acid transporter: EAAT)により取り込まれる。[[興奮性アミノ酸]]トランスポーターはニューロンにも存在するが、アストロサイトに発現する[[EAAT1]]([[Glutamate aspartate transporter]]、[[GLAST]])と[[EAAT2]]([[Glutamate transporter-1]]、[[GLT-1]])が主なグルタミン酸取り込み経路となっている。これらのトランスポーターは細胞内外のイオン濃度勾配を利用してグルタミン酸を輸送する。グルタミン酸一分子の取り込みには2 - 3個のNa<sup>+</sup>イオンと1個のH<sup>+</sup>イオンが共輸送され、1個のK<sup>+</sup>イオンが排出される(図4)。結果として、この取り込みの際にはアストロサイトは脱分極する([[起電性トランスポーター]])<ref><pubmed>21752877</pubmed></ref>。


 アストロサイトには[[抑制性伝達物質]][[GABA]]および[[グリシン]]に対するトランスポーターも発現する。前者は[[GAT-3]]と呼ばれ、一分子のGABAの取り込みに2個のNa<sup>+</sup>イオンの[[共輸送]]を必要とする。後者は[[GLYT-1]]と呼ばれ、一分子のグリシンの取り込みに2個のNa<sup>+</sup>イオンと1個のCl<sup>-</sup>イオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトには[[タウリントランスポーター]]も発現している。
 アストロサイトには[[抑制性伝達物質]][[GABA]]および[[グリシン]]に対するトランスポーターも発現する。前者は[[GAT-3]]と呼ばれ、一分子のGABAの取り込みに2個のNa<sup>+</sup>イオンの[[共輸送]]を必要とする。後者は[[GLYT-1]]と呼ばれ、一分子のグリシンの取り込みに2個のNa<sup>+</sup>イオンと1個のCl<sup>-</sup>イオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトには[[タウリントランスポーター]]も発現している。
91行目: 91行目:
 受容体の発現があったとしても、それが機能的に意味を持っているかどうかはわからず、多くの神経研究者は注目することなく時が過ぎた。というのも、アストロサイトは電気的にはまったく不活性であると報告されており、確かに、深い[[静止膜電位]]は持つものの、通電してもまったく応答することはない<ref><pubmed>5966434</pubmed></ref>。[[電気生理学]]が脳研究の中心的な解析手法であった当時、こんな不活性な細胞が伝達物質受容体を発現していたとしても意味がないと考えられたのも不思議はない。
 受容体の発現があったとしても、それが機能的に意味を持っているかどうかはわからず、多くの神経研究者は注目することなく時が過ぎた。というのも、アストロサイトは電気的にはまったく不活性であると報告されており、確かに、深い[[静止膜電位]]は持つものの、通電してもまったく応答することはない<ref><pubmed>5966434</pubmed></ref>。[[電気生理学]]が脳研究の中心的な解析手法であった当時、こんな不活性な細胞が伝達物質受容体を発現していたとしても意味がないと考えられたのも不思議はない。


 ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]](calcium imaging)法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる[[蛍光カルシウム指示薬]]を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。
 ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]]([[calcium]] imaging)法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる[[蛍光カルシウム指示薬]]を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。


 この方法を使って、アストロサイトのクローン細胞(C6-Bu-1)にセロトニンに対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養アストロサイトを用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref>。それに前後して、アセチルコリン、ヒスタミン、ATP、ノルアドレナリン、ドーパミンに対してもアストロサイトが同様なカルシウム応答反応を生ずることが報告されている。この反応は細胞の一点で見ると反復性律動的反応(カルシウムオシレーション:calcium oscillation)として観察できる(図6)二次元的に観察すると、細胞内で反応が波状に広がるばかりか、周辺のアストロサイトにも波状に伝搬していることがわかる(カルシウムウエーブ)<ref><pubmed>1647876</pubmed></ref>(動画1)。その伝搬速度は神経活動に比べると数オーダー遅い。しかし、この発見はそれまで不活性であり、脳のダイナミックな機能には寄与しないだろうと考えられていたアストロサイトが脳機能発現に積極的関与する可能性を示唆する重要な発見である。
 この方法を使って、アストロサイトのクローン細胞(C6-Bu-1)に[[セロトニン]]に対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養アストロサイトを用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref>。それに前後して、アセチル[[コリン]]、ヒスタミン、ATP、[[ノルアドレナリン]]、[[ドーパミン]]に対してもアストロサイトが同様なカルシウム応答反応を生ずることが報告されている。この反応は細胞の一点で見ると反復性律動的反応(カルシウムオシレーション:calcium oscillation)として観察できる(図6)二次元的に観察すると、細胞内で反応が波状に広がるばかりか、周辺のアストロサイトにも波状に伝搬していることがわかる(カルシウムウエーブ)<ref><pubmed>1647876</pubmed></ref>(動画1)。その伝搬速度は神経活動に比べると数オーダー遅い。しかし、この発見はそれまで不活性であり、脳のダイナミックな機能には寄与しないだろうと考えられていたアストロサイトが脳機能発現に積極的関与する可能性を示唆する重要な発見である。


====グリア伝達物質の遊離====
====グリア伝達物質の遊離====
102行目: 102行目:
 グルタミン酸は脳内のシナプスの70%で興奮性伝達物質として使われている分子である。従って、これを遊離できることはアストロサイトから周辺のシナプスに情報を伝達できることを意味する。
 グルタミン酸は脳内のシナプスの70%で興奮性伝達物質として使われている分子である。従って、これを遊離できることはアストロサイトから周辺のシナプスに情報を伝達できることを意味する。


 もう一つ重要な分子がATPである。アストロサイトがATPを遊離できることはアストロサイト特異的培養系で、ATP測定をすることによって証明される。ATPはそのものが神経伝達物質の一つして認められており、ニューロンには7種の[[イオンチャンネル型]]の[[P2X受容体]]と8種のG-タンパク質共役型の[[P2Y受容体]]が分布していることが認められている。一方、アストロサイトにはイオンチャンネル型[[P2X受容体]]とG-タンパク質共役型の[[P2Y1]]、[[P2Y2]]、[[P2Y4]]を発現しているので、ATPに対する感受性が高く、カルシウムイメージング法でその効果を容易に確かめることができる<ref><pubmed>12420311</pubmed></ref>。
 もう一つ重要な分子がATPである。アストロサイトがATPを遊離できることはアストロサイト特異的培養系で、ATP測定をすることによって証明される。ATPはそのものが神経伝達物質の一つして認められており、ニューロンには7種の[[イオンチャンネル型]]の[[P2X受容体]]と8種のG-タンパク質共役型の[[P2Y受容体]]が分布していることが認められている。一方、アストロサイトには[[イオンチャンネル]]型[[P2X受容体]]とG-タンパク質共役型の[[P2Y1]]、[[P2Y2]]、[[P2Y4]]を発現しているので、ATPに対する感受性が高く、カルシウムイメージング法でその効果を容易に確かめることができる<ref><pubmed>12420311</pubmed></ref>。


 さらに、もう一つ重要な物質の遊離がある。D-セリンである。D-セリンはL-セリンから[[セリンラセミ化酵素]]によって合成され、グルタミン酸受容体のサブタイプの一つである[[NMDA型グルタミン酸受容体]]の[[コアゴニスト]]として機能する。このNMDA型グルタミン酸受容体は細胞内にカルシウム流入を引き起こし、シナプス可塑性で重要な役割を果たしている。アストロサイトはセリンラセミ化酵素を発現し、D-セリンを遊離する<ref><pubmed>9892700</pubmed></ref>。最近はニューロンもD-セリンを産生することができると報告されており、この機能がアストロサイトの特異的機能であることには疑問があるが<ref><pubmed>17663143</pubmed></ref>、グリア細胞から遊離されたD-セリンがニューロンのNMDA型グルタミン酸受容体に促進的作用を受けもっていることは確からしい。このような分子は[[グリオトランスミッター]]と呼ばれている<ref><pubmed>17006901</pubmed></ref>。
 さらに、もう一つ重要な物質の遊離がある。D-[[セリン]]である。D-セリンはL-セリンから[[セリンラセミ化酵素]]によって合成され、グルタミン酸受容体のサブタイプの一つである[[NMDA型グルタミン酸受容体]]の[[コアゴニスト]]として機能する。このNMDA型グルタミン酸受容体は細胞内にカルシウム流入を引き起こし、シナプス可塑性で重要な役割を果たしている。アストロサイトはセリンラセミ化酵素を発現し、D-セリンを遊離する<ref><pubmed>9892700</pubmed></ref>。最近はニューロンもD-セリンを産生することができると報告されており、この機能がアストロサイトの特異的機能であることには疑問があるが<ref><pubmed>17663143</pubmed></ref>、グリア細胞から遊離されたD-セリンがニューロンのNMDA型グルタミン酸受容体に促進的作用を受けもっていることは確からしい。このような分子は[[グリオトランスミッター]]と呼ばれている<ref><pubmed>17006901</pubmed></ref>。


====トライパータイトシナプス====
====トライパータイトシナプス====
 グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えた[[三者間シナプス]]([[トライパータイトシナプス]]; tripartite synapse)という概念である<ref><pubmed>10322493</pubmed></ref>。これまでに述べたアストロサイトの性質を考えれば当然あって然るべき仕組みである。このようなシナプスの存在を考慮に入れて脳における情報処理を考えると、これまでにニューロンのみで作られる回路の上で考えていた脳機能はもっと複雑で奥深いものになる(図7)。
 グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。[[シナプス前]]ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えた[[三者間シナプス]]([[トライパータイトシナプス]]; tripartite synapse)という概念である<ref><pubmed>10322493</pubmed></ref>。これまでに述べたアストロサイトの性質を考えれば当然あって然るべき仕組みである。このようなシナプスの存在を考慮に入れて脳における情報処理を考えると、これまでにニューロンのみで作られる回路の上で考えていた脳機能はもっと複雑で奥深いものになる(図7)。


====シナプス可塑性に及ぼす役割====
====シナプス可塑性に及ぼす役割====
 すでに述べたようにアストロサイトには細かく枝分かれし、シート状の突起([[ラメラ]]:lamella)を持つ樹状突起と、血管に巻き付く突起があり、そのラメラはニューロンの樹状突起上のシナプス構造を包み込んでいる。この構造はアストロサイトがシナプスをサポートしていることを示唆している。 また、海馬スライス培養標本において、アストロサイトを[[緑色蛍光タンパク質]](GFP)で、ニューロンをrhodamine-dextranで標識して、[[二光子顕微鏡]]で[[経時観察]]した結果、アストロサイトと接触したシナプスの寿命は接触しなかったシナプスに比較して有意に長く、成熟型のシナプスに移行していくことが証明されている<ref><pubmed>17215394</pubmed></ref>この事実はおそらくシナプス可塑性にはアストロサイトの存在が重要であることを示唆しており、ますますアストロサイトの重要性が高まっている。
 すでに述べたようにアストロサイトには細かく枝分かれし、シート状の突起([[ラメラ]]:lamella)を持つ樹状突起と、血管に巻き付く突起があり、そのラメラはニューロンの樹状突起上のシナプス構造を包み込んでいる。この構造はアストロサイトがシナプスをサポートしていることを示唆している。 また、海馬[[スライス培養]]標本において、アストロサイトを[[緑色蛍光タンパク質]]([[GFP]])で、ニューロンをrhodamine-dextranで標識して、[[二光子顕微鏡]]で[[経時観察]]した結果、アストロサイトと接触したシナプスの寿命は接触しなかったシナプスに比較して有意に長く、成熟型のシナプスに移行していくことが証明されている<ref><pubmed>17215394</pubmed></ref>この事実はおそらくシナプス可塑性にはアストロサイトの存在が重要であることを示唆しており、ますますアストロサイトの重要性が高まっている。


==オリゴデンドロサイト==
==オリゴデンドロサイト==
125行目: 125行目:
 末梢神経の軸索に巻き付き、髄鞘を作る[[シュワン細胞]]([[Schwann cell]])もオリゴデンドロサイトと同種の細胞である。
 末梢神経の軸索に巻き付き、髄鞘を作る[[シュワン細胞]]([[Schwann cell]])もオリゴデンドロサイトと同種の細胞である。


 成熟中枢神経系にはオリゴデンドロサイトの性質を備えながら髄鞘を作らない細胞も多く見出される。それらの中には[[オリゴデントロサイト前駆細胞]](olygodendrocyte progenitor cells :OPC)に分類される細胞があるが、さらに、[[コンドロイチン硫酸プロテオグリカン]]([[neuron-glial antigen 2]]; [[NG2]])を発現する細胞が見出される。この細胞は成熟細胞でもオリゴデントロサイトと区別ができない。[[NG2グリア]]または[[ポリデンドロサイト]](polydendrocyte)と呼ばれるこの細胞もミエリン鞘形成に至るものとミエリン鞘を形成しない種類がある。この細胞は白質にも灰白質にも分布しており、時にはアストロサイトのような形態をとっていることもある。しかし、アストロサイトのマーカータンパク質であるグリア線維性酸性タンパク質は発現しない<ref><pubmed>19096367</pubmed></ref>。
 成熟中枢神経系にはオリゴデンドロサイトの性質を備えながら髄鞘を作らない細胞も多く見出される。それらの中には[[オリゴデントロサイト前駆細胞]](olygodendrocyte progenitor cells :OPC)に分類される細胞があるが、さらに、[[コンドロイチン硫酸プロテオグリカン]]([[neuron-glial antigen 2]]; [[NG2]])を発現する細胞が見出される。この細胞は成熟細胞でもオリゴデントロサイトと区別ができない。[[NG2グリア]]または[[ポリデンドロサイト]](polydendrocyte)と呼ばれるこの細胞もミエリン鞘形成に至るものとミエリン鞘を形成しない種類がある。この細胞は[[白質]]にも灰白質にも分布しており、時にはアストロサイトのような形態をとっていることもある。しかし、アストロサイトのマーカータンパク質であるグリア線維性酸性タンパク質は発現しない<ref><pubmed>19096367</pubmed></ref>。


 重要な事実はこの細胞が中枢損傷部位に集まり、[[グリア瘢痕]]、[[グリオーシス]]を作ることである。このような性質からこの細胞はsynantocyte(synant :ギリシャ語で:接触することを意味する言葉)と命名されたこともあるが、その後、この名前はあまり流布していない<ref><pubmed>14501223</pubmed></ref>。
 重要な事実はこの細胞が中枢損傷部位に集まり、[[グリア瘢痕]]、[[グリオーシス]]を作ることである。このような性質からこの細胞はsynantocyte(synant :ギリシャ語で:接触することを意味する言葉)と命名されたこともあるが、その後、この名前はあまり流布していない<ref><pubmed>14501223</pubmed></ref>。
148行目: 148行目:
 
 
====髄鞘の可塑性====
====髄鞘の可塑性====
 音楽家やスポーツ選手など通常の人より訓練を積んだヒトとの脳を[[核磁気共鳴画像]]([[MRI]])で解析し、訓練や学習による脳の発達を観察する事が試みられた<ref><pubmed>21403182</pubmed></ref>。これらの研究対象は当初、神経細胞やそのシナプス層、すなわち灰白質に置かれていた。しかし、その途上で、白質、すなわち神経線維の集まりの部分に明らかな発達があることが見出された。場合によっては灰白質よりも明瞭な差があることが発見された<ref><pubmed>16282593</pubmed></ref>。最初の発見は音楽家の脳の[[脳梁]]の拡大であった。脳梁は有髄線維の束である。学習や訓練がその厚みが増すという事実から、神経線維の数が増えている可能性もあるが、それより、一本一本の神経線維の太さが増している可能性が高いと考えられている。神経軸索そのもののサイズが太くなるとは考えにくいため、神経軸索を包む髄鞘の巻数が増えたと考えられた。巻数が増えて、絶縁の程度が高くなると、伝導速度が増す可能性は高い。実際に最近ではMRIで水分子の[[wj:拡散|拡散]]運動を画像化し、その拡散の方向依存性が解析されている。ミエリン化が進むと神経線維に沿った水の拡散の方向性(部分異方性:fractional anisotropy:FA)が高まることが明らかにされ、これを指標として、髄鞘形成のダイナミズムが詳しく調べられている。その結果、[[wj:ジャグリング|ジャグリング]]の練習、試験勉強、楽器の訓練などによってその能力が高められと、脳梁ばかりではなく[[大脳皮質]]や[[海馬]]の白質の拡大が促進されていることが明らかにされた<ref><pubmed>19820707</pubmed></ref>。これは可塑性が決してシナプスだけの現象ではないことを意味し、これまでに積み上げられてきた可塑性のメカニズムに関する理解を根本から変える必要を迫る事実である。
 音楽家やスポーツ選手など通常の人より訓練を積んだヒトとの脳を[[核磁気共鳴画像]]([[MRI]])で解析し、訓練や学習による脳の発達を観察する事が試みられた<ref><pubmed>21403182</pubmed></ref>。これらの研究対象は当初、神経細胞やそのシナプス層、すなわち灰白質に置かれていた。しかし、その途上で、白質、すなわち神経線維の集まりの部分に明らかな発達があることが見出された。場合によっては灰白質よりも明瞭な差があることが発見された<ref><pubmed>16282593</pubmed></ref>。最初の発見は音楽家の脳の[[脳梁]]の拡大であった。脳梁は[[有髄線維]]の束である。学習や訓練がその厚みが増すという事実から、神経線維の数が増えている可能性もあるが、それより、一本一本の神経線維の太さが増している可能性が高いと考えられている。神経軸索そのもののサイズが太くなるとは考えにくいため、神経軸索を包む髄鞘の巻数が増えたと考えられた。巻数が増えて、絶縁の程度が高くなると、伝導速度が増す可能性は高い。実際に最近ではMRIで水分子の[[wj:拡散|拡散]]運動を画像化し、その拡散の方向依存性が解析されている。ミエリン化が進むと神経線維に沿った水の拡散の方向性(部分異方性:fractional anisotropy:FA)が高まることが明らかにされ、これを指標として、髄鞘形成のダイナミズムが詳しく調べられている。その結果、[[wj:ジャグリング|ジャグリング]]の練習、試験勉強、楽器の訓練などによってその能力が高められと、脳梁ばかりではなく[[大脳皮質]]や[[海馬]]の白質の拡大が促進されていることが明らかにされた<ref><pubmed>19820707</pubmed></ref>。これは可塑性が決してシナプスだけの現象ではないことを意味し、これまでに積み上げられてきた可塑性のメカニズムに関する理解を根本から変える必要を迫る事実である。


 オリゴデンドロサイトが神経の活動に応じて積極的にそのミエリン髄鞘を発達させるメカニズムが末梢有髄神経で示されている。末梢神経軸索に発生する活動電位が髄鞘を作るシュワン細胞の増殖や分化に影響を及ぼす。すなわち、神経軸索の活動がATPを介してシュワン細胞のP2受容体を活性化して細胞内カルシウム濃度を上昇させ、その結果、シュワン細胞のCa<sup>2+</sup>レベルが上昇する。細胞内で上昇したCa<sup>2+</sup>が軸索における未熟なシュワン細胞を髄鞘形成に導く。この反応はさらに隣接するシュワン細胞に伝達されて、軸索全体にその効果が及ぶ<ref><pubmed>10731149</pubmed></ref>。
 オリゴデンドロサイトが神経の活動に応じて積極的にそのミエリン髄鞘を発達させるメカニズムが末梢有髄神経で示されている。末梢神経軸索に発生する活動電位が髄鞘を作るシュワン細胞の増殖や分化に影響を及ぼす。すなわち、神経軸索の活動がATPを介してシュワン細胞のP2受容体を活性化して細胞内カルシウム濃度を上昇させ、その結果、シュワン細胞のCa<sup>2+</sup>レベルが上昇する。細胞内で上昇したCa<sup>2+</sup>が軸索における未熟なシュワン細胞を髄鞘形成に導く。この反応はさらに隣接するシュワン細胞に伝達されて、軸索全体にその効果が及ぶ<ref><pubmed>10731149</pubmed></ref>。
171行目: 171行目:


====マーカー分子====
====マーカー分子====
 ミクログリアはいろいろなマーカーによって検出できる。例えば、[[チアミン・ピロフォスファターゼ]]([[Thiamine pyrophosphatase]]: [[TPPase]])や[[非特異的エステラーゼ]]([[nonspecific esterase]]: [[NSE]])など中枢神経系の細胞の中ではミクログリアに比較的特異的に発現する酵素類を検出する方法である。また、マクロファージの特異的抗体や、免疫関連の[[wj:補体受容体|補体受容体]]に対する抗体を用いても脳内のミクログリアを免疫染色できる。一方、ミクログリアの細胞表面には[[wj:主要組織適合遺伝子複合体|主要組織適合遺伝子複合体]]([[wikipedia:Major histocompatibility complex|Major histocompatibility complex]]: [[w:MHC|MHC]])分子が存在し、その抗体はミクログリアのよいマーカーとなる。現在、ミクログリアの最も有効なマーカーとして利用されるのが[[Iba1]]と呼ばれるタンパク質である。Iba1抗体もミクログリアばかりではなく、マクロファージにも反応する<ref><pubmed>14756805</pubmed></ref>。
 ミクログリアはいろいろなマーカーによって検出できる。例えば、[[チアミン・ピロフォスファターゼ]]([[Thiamine pyrophosphatase]]: [[TPPase]])や[[非特異的エステラーゼ]]([[nonspecific esterase]]: [[NSE]])など中枢神経系の細胞の中ではミクログリアに比較的特異的に発現する酵素類を検出する方法である。また、マクロファージの特異的抗体や、免疫関連の[[wj:補体受容体|補体受容体]]に対する抗体を用いても脳内のミクログリアを[[免疫染色]]できる。一方、ミクログリアの細胞表面には[[wj:主要組織適合遺伝子複合体|主要組織適合遺伝子複合体]]([[wikipedia:Major histocompatibility complex|Major histocompatibility complex]]: [[w:MHC|MHC]])分子が存在し、その抗体はミクログリアのよいマーカーとなる。現在、ミクログリアの最も有効なマーカーとして利用されるのが[[Iba1]]と呼ばれるタンパク質である。Iba1抗体もミクログリアばかりではなく、マクロファージにも反応する<ref><pubmed>14756805</pubmed></ref>。


====ヒト脳における分布量====
====ヒト脳における分布量====
196行目: 196行目:
 ところが、その救助がすでに間に合わない状態である場合にミクログリアはアメーバ状に形を変えて、その場に移動する。そして、損傷を受けた細胞を貪食する。この時、貪食する必要のある死んだ細胞を見つけ出している。これが成り立つためには、死にかかった細胞から出される信号を認知する必要がある。実はミクログリアにはもう一つプリン受容体、[[P2Y6受容体]]が存在している。この受容体は不思議なことに、ATPやADPには反応しない。発見以後しばらくはその役目が不明であったが、やがて、P2Y6受容体を活性化するのは[[ウリジン二リン酸]]([[UDP]])であることが明らかにされた<ref><pubmed>19262132</pubmed></ref>。
 ところが、その救助がすでに間に合わない状態である場合にミクログリアはアメーバ状に形を変えて、その場に移動する。そして、損傷を受けた細胞を貪食する。この時、貪食する必要のある死んだ細胞を見つけ出している。これが成り立つためには、死にかかった細胞から出される信号を認知する必要がある。実はミクログリアにはもう一つプリン受容体、[[P2Y6受容体]]が存在している。この受容体は不思議なことに、ATPやADPには反応しない。発見以後しばらくはその役目が不明であったが、やがて、P2Y6受容体を活性化するのは[[ウリジン二リン酸]]([[UDP]])であることが明らかにされた<ref><pubmed>19262132</pubmed></ref>。


 UDPは通常細胞外に遊離される分子ではない。死にかかった細胞からごく少量遊離されるだけである。P2Y6受容体がUDPで刺激されると、ミクログリアのアメーバ運動が活性化され貪食機能が活性化される。こうして、貪食能が高まったミクログリアが周辺に分布する細胞のすべてを貪食するのはない。もう一つ条件がある。死んで細胞膜が壊れた時に、提示される膜成分のリン脂質の成分である[[ホスファチジルセリン]]である。これを提示していることを認識して、その細胞のみを貪食する。このホスファチジルセリンは「私を食べて信号、Eat me signal」なのである<ref><pubmed>3464483</pubmed></ref>(図15)。ミクログリアは単なる破壊者でも、無差別な掃除係でもない。非常に高度な認識機能を備えた、環境整備係として機能していることがわかる。
 UDPは通常細胞外に遊離される分子ではない。死にかかった細胞からごく少量遊離されるだけである。P2Y6受容体がUDPで刺激されると、ミクログリアのアメーバ運動が活性化され貪食機能が活性化される。こうして、貪食能が高まったミクログリアが周辺に分布する細胞のすべてを貪食するのはない。もう一つ条件がある。死んで[[細胞膜]]が壊れた時に、提示される膜成分のリン脂質の成分である[[ホスファチジルセリン]]である。これを提示していることを認識して、その細胞のみを貪食する。このホスファチジルセリンは「私を食べて信号、Eat me signal」なのである<ref><pubmed>3464483</pubmed></ref>(図15)。ミクログリアは単なる破壊者でも、無差別な掃除係でもない。非常に高度な認識機能を備えた、環境整備係として機能していることがわかる。


====シナプスの保守点検====
====シナプスの保守点検====

案内メニュー