16,040
回編集
編集の要約なし |
細編集の要約なし |
||
12行目: | 12行目: | ||
==発見== | ==発見== | ||
グリア細胞のgliaはニューロンとニューロンの間の空間を埋める糊やセメントのような物質という意味のNervenkittが語源となっている。[[病理学]]者の[[wj:ルドルフ・ルートヴィヒ・カール・ウィルヒョー|ルドルフ・ウイルヒョー]](Rudolph Virchow)が1846年に発表した論文に記載されている当時の[[組織染色]]技術では細胞の形を捉えることができなかったので、とりあえず、「神経の間を埋める何らかの物質」というような意味としての定義したのだろう。ウイルヒョーはやがてこれが細胞であることをつきとめて、細胞病理学の教科書には[[結合組織]]細胞と記載している(1858年)。その後、[[w:Otto Deiters|オットー・ダイテルス]](Otto Deiters) 、[[w:Mihály Lenhossék|ミカエル・レンホサック]](Michael von Lenhossék)、[[w:Wilhelm His, Sr.|ウイルヘルム・ヒス]](Wilhelm His)など19世紀末に活躍した多くの著名な神経組織学者がこの細胞の存在に興味を持ち、多様な形態や脳内分布の特徴を報告している。英語ではneurogliaと訳され、日本語では「膠(こう)細胞」(膠(にかわ)とはコラーゲンを原料とする接着剤)と訳される。 | |||
やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、[[wj:カミッロ・ゴルジ|カミロ・ゴルジ]](Camillo Golgi)が確立した[[ゴルジ染色]]法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte、またはアストログリア、astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのが[[wj:サンティアゴ・ラモン・イ・カハール|ラモン・イ・カハール]](Santiago Ramon y Cajal)である。[[ゴルジ]]染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、[[w:Pío del Río Hortega|ピオ・デル・リオ-オルテガ]](Pío del Río Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]](oligodendrocyte、または[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]](microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、[[大グリア細胞]](macroglia、アストロサイトとオリゴデンドロサイト)と、[[小グリア細胞]](microglia:ミクログリア)に分類されている。 | やがて、細胞染色法の発達によって、その実体が少しずつ明らかにされてきたが、[[wj:カミッロ・ゴルジ|カミロ・ゴルジ]](Camillo Golgi)が確立した[[ゴルジ染色]]法により、ニューロンと共にこの細胞の形態も浮き彫りになってきた。現在、グリア細胞の一つとして、よく知られている[[アストロサイト]](astrocyte、またはアストログリア、astroglia)という名称を与えたのはレンホサックであるが、その実体を最も正確に記載したのが[[wj:サンティアゴ・ラモン・イ・カハール|ラモン・イ・カハール]](Santiago Ramon y Cajal)である。[[ゴルジ]]染色を改良した染色法によって様々な形態のアストロサイトを観察している。その後、[[w:Pío del Río Hortega|ピオ・デル・リオ-オルテガ]](Pío del Río Hortega)がニューロン、アストロサイトに次ぐ第三の細胞群として、[[オリゴデンドロサイト]](oligodendrocyte、または[[オリゴデンドログリア]]:oligodendroglia)と[[ミクログリア]](microglia)の存在を報告している(1921)(グリア細胞発見の歴史については文献<ref>'''H Kettenmann, B R Ranson'''<br>Neuroglia 2nd Ed<br>''Oxford University Press(New York)''2005</ref>および<ref name=ref2>'''工藤佳久'''<br>脳とグリア細胞<br>''技術評論社(東京)''2011</ref>を参照)。すなわち、これらの脳を構成する主要な細胞としてのグリア細胞群の存在は、ニューロンとほぼ同時代に発見されていたのである。現在、グリア細胞は、[[大グリア細胞]](macroglia、アストロサイトとオリゴデンドロサイト)と、[[小グリア細胞]](microglia:ミクログリア)に分類されている。 | ||
36行目: | 36行目: | ||
====同種の細胞==== | ====同種の細胞==== | ||
アストロサイトの同種と考えられる細胞は [[小脳]]の[[バーグマン細胞]](Bergmann glia)、[[網膜]]に分布する[[ミュラー細胞]]([[Müller]] | アストロサイトの同種と考えられる細胞は [[小脳]]の[[バーグマン細胞]](Bergmann glia)、[[網膜]]に分布する[[ミュラー細胞]]([[Müller cell]])など多様である。しかし、これらの形は決して星の様な形はとっていない。 | ||
====マーカー分子==== | ====マーカー分子==== | ||
48行目: | 48行目: | ||
]] | ]] | ||
====脳の機能的構造維持==== | ====脳の機能的構造維持==== | ||
脳の[[灰白質]]の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は[[wj:血管|血管]]に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。すなわち、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが作るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。 | |||
====細胞外イオン環境の調節==== | ====細胞外イオン環境の調節==== | ||
68行目: | 68行目: | ||
アストロサイトには[[抑制性伝達物質]][[GABA]]および[[グリシン]]に対するトランスポーターも発現する。前者は[[GAT-3]]と呼ばれ、一分子のGABAの取り込みに2個のNa<sup>+</sup>イオンの[[共輸送]]を必要とする。後者は[[GLYT-1]]と呼ばれ、一分子のグリシンの取り込みに2個のNa<sup>+</sup>イオンと1個のCl<sup>-</sup>イオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトには[[タウリントランスポーター]]も発現している。 | アストロサイトには[[抑制性伝達物質]][[GABA]]および[[グリシン]]に対するトランスポーターも発現する。前者は[[GAT-3]]と呼ばれ、一分子のGABAの取り込みに2個のNa<sup>+</sup>イオンの[[共輸送]]を必要とする。後者は[[GLYT-1]]と呼ばれ、一分子のグリシンの取り込みに2個のNa<sup>+</sup>イオンと1個のCl<sup>-</sup>イオン の共輸送が必要とされる<ref><pubmed>24273530</pubmed></ref>。その他、アストロサイトには[[タウリントランスポーター]]も発現している。 | ||
さらに中枢における[[uptake 1]] | さらに中枢における[[uptake 1]]([[Net]] ([[Slc6a2]]), [[Dat]] ([[Slc6a3]]), [[Sert]] ([[Slc6a4]]))と呼ばれるNa<sup>+</sup>/Cl<sup>-</sup>イオン依存性および[[コカイン]]感受性の神経型[[モノアミントランスポーター]]に加えて、[[uptake 2]] ([[Oct1]]-[[Oct3|3]]([[Slc22a1]]-[[Slc22a3|3]]), [[Pmat]] ([[Slc29a4]]))と呼ばれるNa<sup>+</sup>/Cl<sup>-</sup>イオンに依存しない[[ステロイド]]感受性のモノアミントランスポーターが存在することが明らかにされている。アストロサイトにはuptake 1もuptake 2も存在し、モノアミン除去に重要な役割を果たしている。その他、アストロサイトには[[ヒスタミントランスポーター]]の存在も同定されている<ref><pubmed>13677912</pubmed></ref> <ref>'''A Verkhratsky, A Butt'''<br>Glial Neurobiology A Textbook<br>''Wiley(England)''2007</ref>。 | ||
====グリア細胞が合成し遊離する分子==== | ====グリア細胞が合成し遊離する分子==== | ||
82行目: | 82行目: | ||
====神経伝達物質受容体の発現==== | ====神経伝達物質受容体の発現==== | ||
20世紀末まではもっぱら、ニューロンの支持細胞としての機能のみが注目されていたアストロサイトであるが、実は1980年代後半にはこの細胞に[[グルタミン酸受容体]]、[[GABA受容体]]、[[セロトニン受容体]]、[[ノルアドレナリン受容体]]など様々な[[ | 20世紀末まではもっぱら、ニューロンの支持細胞としての機能のみが注目されていたアストロサイトであるが、実は1980年代後半にはこの細胞に[[グルタミン酸受容体]]、[[GABA受容体]]、[[セロトニン受容体]]、[[ノルアドレナリン受容体]]など様々な[[神経伝達物質]][[受容体]]が発現していることがすでに報告されている。この頃から、分子生物学的に神経伝達物質受容体の存在を実証する方法が確立され、アストロサイトには[[Gタンパク質共役型受容体]]が分布していることが明らかにされてきていた。現在では[[プリン受容体]]、[[アセチルコリン受容体]]、[[ヒスタミン受容体]]、[[ドーパミン受容体]]の発現も確認されている。もちろん、すべてのアストロサイトに発現しているのではない。しかし、主要な神経伝達物質のほとんどがアストロサイトに発現する可能性がある<ref><pubmed>3117429</pubmed></ref>。 | ||
[[ファイル:Kudo Fig6.png|thumb|right|350px|'''図6.G-タンパク質共役型グルタミン酸受容体を介したアストロサイトのカルシウムオシレーション'''<br>初代培養海馬細胞に蛍光カルシウム指示薬fura-2を負荷して、NMDAとt-ACPDの作用を検討した後MAP2抗体とGFAP抗体で、それぞれニューロンとアストロサイトを同定した。黒枠:NMDAまたはt-ACPDにカルシウム応答をする細胞。赤枠:t-ACPDによってアストロサイトに引き起こされたカルシウムオシレーション(動画参照)。]] | [[ファイル:Kudo Fig6.png|thumb|right|350px|'''図6.G-タンパク質共役型グルタミン酸受容体を介したアストロサイトのカルシウムオシレーション'''<br>初代培養海馬細胞に蛍光カルシウム指示薬fura-2を負荷して、NMDAとt-ACPDの作用を検討した後MAP2抗体とGFAP抗体で、それぞれニューロンとアストロサイトを同定した。黒枠:NMDAまたはt-ACPDにカルシウム応答をする細胞。赤枠:t-ACPDによってアストロサイトに引き起こされたカルシウムオシレーション(動画参照)。]] | ||
91行目: | 91行目: | ||
受容体の発現があったとしても、それが機能的に意味を持っているかどうかはわからず、多くの神経研究者は注目することなく時が過ぎた。というのも、アストロサイトは電気的にはまったく不活性であると報告されており、確かに、深い[[静止膜電位]]は持つものの、通電してもまったく応答することはない<ref><pubmed>5966434</pubmed></ref>。[[電気生理学]]が脳研究の中心的な解析手法であった当時、こんな不活性な細胞が伝達物質受容体を発現していたとしても意味がないと考えられたのも不思議はない。 | 受容体の発現があったとしても、それが機能的に意味を持っているかどうかはわからず、多くの神経研究者は注目することなく時が過ぎた。というのも、アストロサイトは電気的にはまったく不活性であると報告されており、確かに、深い[[静止膜電位]]は持つものの、通電してもまったく応答することはない<ref><pubmed>5966434</pubmed></ref>。[[電気生理学]]が脳研究の中心的な解析手法であった当時、こんな不活性な細胞が伝達物質受容体を発現していたとしても意味がないと考えられたのも不思議はない。 | ||
ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]]([[calcium]] | ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。[[カルシウムイメージング]]([[calcium imaging]])法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる[[蛍光カルシウム指示薬]]を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。 | ||
この方法を使って、アストロサイトのクローン細胞(C6-Bu-1)に[[セロトニン]]に対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養アストロサイトを用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref> | この方法を使って、アストロサイトのクローン細胞(C6-Bu-1)に[[セロトニン]]に対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養アストロサイトを用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref> <ref><pubmed>12106244</pubmed></ref>。それに前後して、アセチルコリン、ヒスタミン、ATP、[[ノルアドレナリン]]、[[ドーパミン]]に対してもアストロサイトが同様なカルシウム応答反応を生ずることが報告されている。この反応は細胞の一点で見ると反復性律動的反応(カルシウムオシレーション:calcium oscillation)として観察できる(図6)二次元的に観察すると、細胞内で反応が波状に広がるばかりか、周辺のアストロサイトにも波状に伝搬していることがわかる(カルシウムウエーブ)<ref><pubmed>1647876</pubmed></ref>(動画1)。その伝搬速度は神経活動に比べると数オーダー遅い。しかし、この発見はそれまで不活性であり、脳のダイナミックな機能には寄与しないだろうと考えられていたアストロサイトが脳機能発現に積極的関与する可能性を示唆する重要な発見である。 | ||
====グリア伝達物質の遊離==== | ====グリア伝達物質の遊離==== |