「チャネル病」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
10行目: 10行目:
同義語:チャネロパチー
同義語:チャネロパチー


{{box|text= チャネル病は、イオンチャネルあるいはその関連タンパク質が原因で起こる疾患の総称である。チャネル遺伝子の変異による先天性のものと、薬剤や自己免疫疾患等で起こる後天性のものが存在する。特に電位依存性のイオンチャネルに関しては、神経細胞や筋細胞などの興奮性を制御する役割を担っているため、これらのイオンチャネルの異常は、てんかんや不整脈などの興奮性異常が生じる疾患につながる。チャネル病が起こる原因を理解するためには、原因である遺伝子とその変異を同定することはもちろん不可欠であるが、発現系によりそれら変異体の電気生理学的性質の変化を調べることで、チャネル病特有の原因、たとえば開閉の電位依存性の変化や、不活性化の異常など、より深いレベルで原因を解明することも可能である。近年では患者から作成したiPS細胞を心筋細胞などに分化させることで、遺伝子異常が活動電位等の電気的性質にどのような影響を与えるかということまで解析が可能になりつつある。}}
{{box|text= チャネル病は、イオンチャネルあるいはその関連タンパク質が原因で起こる疾患の総称である。チャネル遺伝子の変異による先天性のものと、薬剤や自己免疫疾患等で起こる後天性のものが存在する。特に電位依存性のイオンチャネルに関しては、神経細胞や筋細胞などの興奮性を制御する役割を担っているため、これらのイオンチャネルの異常は、てんかんや不整脈などの興奮性異常が生じる疾患につながる。チャネル病が起こる原因を理解するためには、原因である遺伝子とその変異を同定することはもちろん不可欠であるが、発現系によりそれら変異体の電気生理学的性質の変化を調べることで、チャネル病特有の原因、たとえば開閉の電位依存性の変化や、不活性化の異常など、より深いレベルで原因を解明することも可能である。近年では患者から作成したiPS細胞を心筋細胞などに分化させることで、遺伝子異常が活動電位等の電気的性質にどのような影響を与えるかということまで解析が可能になりつつある。またゲノムワイド関連解析等により、次々と新しいチャネル病に関わる遺伝子および変異が同定されつつある。}}


==チャネル病とは==
==チャネル病とは==
 チャネル病は[[イオンチャネル]]あるいはその関連タンパク質が原因で起こる疾患の総称である。イオンチャネルとは[[膜タンパク質]]の一種であり、特定の種類の[[イオン]]を通すことで細胞の電気的活動を担っている<ref>'''久保義弘、岡村康司'''<br>標準生理学 第8版 第4章 膜興奮性とイオンチャネル<br>''医学書院(東京)'':2014</ref>。そのため、[[興奮性細胞]]によって構成される[[脳神経]]系、[[心臓]]、[[骨格筋]]等におけるチャネル病の例が多数報告されている。あるいは[[腎臓]]や[[肺]]などでイオンの輸送が阻害されることによって起こるチャネル病なども知られている。イオンチャネルが身体のさまざまな部位で重要な役割を果たしていることから、チャネル病もさまざまな臓器において起こりうる。
 チャネル病は[[イオンチャネル]]あるいはその関連タンパク質が原因で起こる疾患の総称である。イオンチャネルとは[[膜タンパク質]]の一種であり、特定の種類の[[イオン]]を通すことで細胞の電気的活動を担っている<ref>'''久保義弘、岡村康司'''<br>標準生理学 第8版 第4章 膜興奮性とイオンチャネル<br>''医学書院(東京)'':2014</ref>。そのため、[[興奮性細胞]]によって構成される[[脳神経]]系、[[心臓]]、[[骨格筋]]等におけるチャネル病の例が多数報告されている。あるいは[[腎臓]]や[[肺]]などでイオンの輸送が阻害されることによって起こるチャネル病なども知られている。イオンチャネルは身体のさまざまな部位で重要な役割を果たしており、したがってチャネル病もさまざまな臓器において起こりうる。


 チャネル病には先天的な原因によって起こるものと、[[免疫]]疾患や薬剤誘発性等、後天的な原因によるものとに大別される。先天的とはすなわち遺伝子変異によるものであり、主に点突然変異によるアミノ酸置換やフレームシフトによるトランケーション、CAGリピートの増加などによって起こる。それらの結果として、単にイオンチャネルとしての機能が欠損するもの、すなわちイオン電流がなくなる、あるいは電流量が減少してしまうこともあれば、イオンチャネルの生物物理学的な性質が変わってしまっている場合もある。前者としては、イオンを通す[[イオン選択性フィルター]]の性質が変わることでイオンが通りにくくなってしまったり、あるいは[[細胞膜]]への輸送(トラフィッキング)への影響で、細胞膜上で機能しているイオンチャネルの量(発現量)が減ってしまったりするケースが考えられる。後者としては、例えば電位依存性のイオンチャネルの場合、その活性化の電位依存性が変化すること、あるいは不活性化するイオンチャネルにおいて不活性化の性質が変化することなどが考えられる。
 チャネル病には先天的な原因によって起こるものと、[[免疫]]疾患や薬剤誘発性等、後天的な原因によるものとに大別される。先天的とはすなわち遺伝子変異によるものであり、主に点突然変異によるアミノ酸置換やフレームシフトによるトランケーション、CAGリピートの増加などによって起こる。それらの結果として、単にイオンチャネルとしての機能が欠損するもの、すなわちイオン電流がなくなる、あるいは電流量が減少してしまうこともあれば、イオンチャネルの生物物理学的な性質が変わってしまっている場合もある。前者としては、イオンを通す[[イオン選択性フィルター]]の性質が変わることでイオンが通りにくくなってしまったり、あるいは[[細胞膜]]への輸送(トラフィッキング)への影響で、細胞膜上で機能しているイオンチャネルの量(発現量)が減ってしまったりするケースが考えられる。後者としては、例えば電位依存性のイオンチャネルの場合、その活性化の電位依存性が変化すること、あるいは不活性化するイオンチャネルにおいて不活性化の性質が変化することなどが考えられる。
19行目: 19行目:
 疾患の原因である変異が同定できれば、[[哺乳類]][[培養細胞]]等の発現系に変異を導入したイオンチャネルを発現させ、電気生理学的手法もしくは細胞生物学的手法により機能解析をすることで、変異によって生じたイオンチャネル機能もしくは発現量の変化と、それによる疾患の発生メカニズムを明らかにすることができる。疾患の治療につなげるためには、このようなイオンチャネル特有の機能解析に基づいた原因の理解が不可欠である。さらに近年はチャネル病の患者から作成された[[iPS細胞]]を用いた機能解析も始まっており、この流れは今後ますます加速していくと思われる<ref name=ref2><pubmed>21307850</pubmed></ref><ref><pubmed>23277474</pubmed></ref>。
 疾患の原因である変異が同定できれば、[[哺乳類]][[培養細胞]]等の発現系に変異を導入したイオンチャネルを発現させ、電気生理学的手法もしくは細胞生物学的手法により機能解析をすることで、変異によって生じたイオンチャネル機能もしくは発現量の変化と、それによる疾患の発生メカニズムを明らかにすることができる。疾患の治療につなげるためには、このようなイオンチャネル特有の機能解析に基づいた原因の理解が不可欠である。さらに近年はチャネル病の患者から作成された[[iPS細胞]]を用いた機能解析も始まっており、この流れは今後ますます加速していくと思われる<ref name=ref2><pubmed>21307850</pubmed></ref><ref><pubmed>23277474</pubmed></ref>。


 以下、興奮性細胞である神経系、心筋、骨格筋のチャネル病を中心に代表的なチャネル病の例を挙げる。しかしながら、イオンチャネルの遺伝子数と発現部位の多様性を考えれば、下記の例以外にも多くのチャネル病が存在し、今後も発見・同定されていくのではないかと思われる。また最近の総説として、神経系のチャネル病については2010年6月1日号にJournal of Physiologyが、チャネル病全般については2010年7月号にPflügers Archivがそれぞれ特集号を出版しているので、そちらも参照されたい<ref><pubmed>20516349</pubmed></ref><ref><pubmed>20238123</pubmed></ref>。
 以下、興奮性細胞である神経系、心筋、骨格筋のチャネル病を中心に代表的なチャネル病の例を挙げる。しかしながら、イオンチャネルの遺伝子数と発現部位の多様性を考えれば、下記の例以外にも多くのチャネル病が存在すると考えられ、ゲノムワイド関連解析などにより今後も続々と発見・同定されていくのではないかと思われる。最近の総説として、神経系のチャネル病については2010年6月1日号にJournal of Physiologyが、チャネル病全般については2010年7月号にPflügers Archivがそれぞれ特集号を出版しているので、そちらも参照されたい<ref><pubmed>20516349</pubmed></ref><ref><pubmed>20238123</pubmed></ref>。


==脳・神経系のチャネル病==
==脳・神経系のチャネル病==
 脳・神経系では、神経細胞がネットワークを張り巡らせ、その電気的活動を担っている。神経細胞の電気的活動は、[[電位依存性ナトリウムチャネル]](NaV)、[[電位依存性カリウムチャネル]](KV)、[[電位依存性カルシウムチャネル]](CaV)などによって担われている。したがって、これらのイオンチャネルに異常が生じると、てんかんに代表される脳神経系のチャネル病につながる。
 脳・神経系では、神経細胞がネットワークを張り巡らせ、その電気的活動を担っている。神経細胞の電気的活動は、[[電位依存性ナトリウムチャネル]](NaV)、[[電位依存性カリウムチャネル]](KV)、[[電位依存性カルシウムチャネル]](CaV)などによって担われている。したがって、これらのイオンチャネルに異常が生じると、てんかんに代表される脳神経系のチャネル病につながる。また最近のゲノムワイド関連解析により、自閉症に関連する遺伝子として[[電位依存性ナトリウムチャネル]]と[[電位依存性カリウムチャネル]]があげられており、精神疾患との関わりも注目されている<ref name=ref3><pubmed>25363760</pubmed></ref>。


=== 電位依存性ナトリウムチャネルの異常 ===
=== 電位依存性ナトリウムチャネルの異常 ===
 電位依存性ナトリウムチャネルが原因となる中枢神経系の異常としては、[[熱性けいれんプラス]] (GEFS+; generalized epilepsy with febrile seizures plus)とよばれる家族性の[[てんかん]]が知られているが、これは電位依存性ナトリウムチャネル遺伝子のうちの[[NaV1.1]] ([[SCNA1]]),[[NaV1.2]] ([[SCNA2]])、あるいはその修飾サブユニットである[[Naβ1]] ([[SCNB1]])に異常が生じることで引き起こされる<ref><pubmed>9697698</pubmed></ref><ref><pubmed>10742094</pubmed></ref>。電位依存性ナトリウムチャネルにおいては、その[[不活性化]]と呼ばれる性質が神経細胞の興奮性の制御に重要である。この疾患においては、アミノ酸変異によって不活性化の性質が不完全になっており、ナトリウムチャネルが開きやすい状態にあることが神経細胞の過興奮につながり、てんかん発作を引き起こすと考えられる。またより重度な[[乳児重症ミオクロニーてんかん]]においても、NaV1.1がその原因遺伝子であることが判明している<ref><pubmed>11359211</pubmed></ref>。
 電位依存性ナトリウムチャネルが原因となる中枢神経系の異常としては、[[熱性けいれんプラス]] (GEFS+; generalized epilepsy with febrile seizures plus)とよばれる家族性の[[てんかん]]が知られているが、これは電位依存性ナトリウムチャネル遺伝子のうちの[[NaV1.1]] ([[SCNA1]]),[[NaV1.2]] ([[SCNA2]])、あるいはその修飾サブユニットである[[Naβ1]] ([[SCNB1]])に異常が生じることで引き起こされる<ref><pubmed>9697698</pubmed></ref><ref><pubmed>10742094</pubmed></ref>。電位依存性ナトリウムチャネルにおいては、その[[不活性化]]と呼ばれる性質が神経細胞の興奮性の制御に重要である。この疾患においては、アミノ酸変異によって不活性化の性質が不完全になっており、ナトリウムチャネルが開きやすい状態にあることが神経細胞の過興奮につながり、てんかん発作を引き起こすと考えられる。またより重度な[[乳児重症ミオクロニーてんかん]]においても、NaV1.1がその原因遺伝子であることが判明している<ref><pubmed>11359211</pubmed></ref>。この疾患においては、てんかんに加えて自閉症に似た症状や精神発達障害、運動失調なども伴う。さらに最近のゲノムワイド関連解析により、Nav1.2が自閉症に関連する遺伝子として同定されている<ref name=ref3 />。


=== 電位依存性カリウムチャネルの異常 ===
=== 電位依存性カリウムチャネルの異常 ===
34行目: 34行目:


=== 電位依存性カルシウムチャネルの異常 ===
=== 電位依存性カルシウムチャネルの異常 ===
 電位依存性カルシウムチャネルは、それぞれのサブタイプが、[[細胞体]]、[[神経終末]]、[[樹状突起]]などに局在して機能を果たしている。この中で、[[P/Q型カルシウムチャネル]]としても知られる[[Cav2.1|CaV2.1]]([[CACNA1A]])は、[[シナプス前終末]]での神経伝達物質放出に関わるイオンチャネルであるが、[[家族性片頭痛]]、[[反復発作性失調症2型]] ([[EA2]])、[[脊髄小脳失調症6型]] ([[SCA6]])といった、小脳に異常を呈するさまざまな神経疾患に関わっていることも知られている。
 電位依存性カルシウムチャネルは、それぞれのサブタイプが、[[細胞体]]、[[神経終末]]、[[樹状突起]]などに局在して機能を果たしている。この中で、[[P/Q型カルシウムチャネル]]としても知られる[[Cav2.1|CaV2.1]]([[CACNA1A]])は、[[シナプス前終末]]での神経伝達物質放出に関わるイオンチャネルであるが、[[家族性片頭痛]]、[[反復発作性失調症2型]] ([[EA2]])、[[脊髄小脳失調症6型]] ([[SCA6]])といった、小脳に異常を呈するさまざまな神経疾患に関わっていることも知られている。たとえば[[脊髄小脳失調症6型]]においては、[[P/Q型カルシウムチャネル]]の3'末端でCAGの3塩基が繰り返し配列を取って異常に長くなる、いわゆるCAGリピート病であることが知られている。さらに最近のゲノムワイド関連解析により、Cav1.3(CACNA1D)とそのサブユニットであるα2δ-3(CACNA2D3)が自閉症に関連する遺伝子として新たに同定されている<ref name=ref3 />。


==心臓のチャネル病==
==心臓のチャネル病==
54行目: 54行目:
 前述のとおり、心臓では複数種類のカリウムチャネルが心臓の興奮性制御に寄与しており、QT延長症候群にも複数種類のカリウムチャネルが原因遺伝子として報告されている。先天性QT延長症候群の中でもっとも高い頻度で報告されているのは、[[KCNQ1]]チャネルが原因のLQT1と、[[KCNH2]] ([[hERG]])チャネルが原因のLQT2である<ref><pubmed>7736582</pubmed></ref><ref><pubmed>7889573</pubmed></ref><ref><pubmed>8528244</pubmed></ref><ref><pubmed>8900282</pubmed></ref><ref><pubmed>8900283</pubmed></ref>。どちらも[[電位依存性カリウムチャネル|電位依存性カリウムチャネルαサブユニット]]をコードしており、両者でLQTとして遺伝子診断される患者全体の80%程度を占めている。それぞれのイオンチャネルからはこれまでに数十を超える変異部位が見つかっており、ほとんどどの部位に問題が生じても、疾患を生じうることがわかる(図2)。
 前述のとおり、心臓では複数種類のカリウムチャネルが心臓の興奮性制御に寄与しており、QT延長症候群にも複数種類のカリウムチャネルが原因遺伝子として報告されている。先天性QT延長症候群の中でもっとも高い頻度で報告されているのは、[[KCNQ1]]チャネルが原因のLQT1と、[[KCNH2]] ([[hERG]])チャネルが原因のLQT2である<ref><pubmed>7736582</pubmed></ref><ref><pubmed>7889573</pubmed></ref><ref><pubmed>8528244</pubmed></ref><ref><pubmed>8900282</pubmed></ref><ref><pubmed>8900283</pubmed></ref>。どちらも[[電位依存性カリウムチャネル|電位依存性カリウムチャネルαサブユニット]]をコードしており、両者でLQTとして遺伝子診断される患者全体の80%程度を占めている。それぞれのイオンチャネルからはこれまでに数十を超える変異部位が見つかっており、ほとんどどの部位に問題が生じても、疾患を生じうることがわかる(図2)。


 これらカリウムチャネルのβサブユニットである[[KCNE1]] (LQT5の原因遺伝子)、[[KCNE2]] (LQT6の原因遺伝子)、KCNQ1結合タンパク質である[[AKAP-9]] (LQT11の原因遺伝子)もQT延長症候群原因遺伝子である。これらLQTは[[常染色体優性遺伝]]であり、[[Romano-Ward症候群]]とも分類される。
 これらカリウムチャネルのβサブユニットである[[KCNE1]] (LQT5)、[[KCNE2]] (LQT6)、KCNQ1結合タンパク質である[[AKAP-9]] (LQT11)もQT延長症候群原因遺伝子である。これらLQTは[[常染色体優性遺伝]]であり、[[Romano-Ward症候群]]とも分類される。


 一方先天性の難聴を伴う[[常染色体劣性遺伝]]のものは[[Jervell and Lange-Nielsen症候群]] (JLN)と呼ばれて区別される。JLN1として[[KCNQ1]]、JLN2として[[KCNE1]]が知られている。
 一方先天性の難聴を伴う[[常染色体劣性遺伝]]のものは[[Jervell and Lange-Nielsen症候群]] (JLN)と呼ばれて区別される。JLN1として[[KCNQ1]]、JLN2として[[KCNE1]]が知られている。
60行目: 60行目:
 [[内向き整流性カリウムチャネル]][[Kir2.1]] ([[KCNJ2]])もQT延長症候群の原因遺伝子(LQT7)であるが、さらに[[周期性四肢麻痺]]、形態異常などを併発し、[[Andersen症候群]]と呼ばれる。Timothy症候群と同様、Kir2.1チャネルが、できあがった機能に必要なだけではなく、発生過程・形態形成においても重要な役割を果たしていることを示している。
 [[内向き整流性カリウムチャネル]][[Kir2.1]] ([[KCNJ2]])もQT延長症候群の原因遺伝子(LQT7)であるが、さらに[[周期性四肢麻痺]]、形態異常などを併発し、[[Andersen症候群]]と呼ばれる。Timothy症候群と同様、Kir2.1チャネルが、できあがった機能に必要なだけではなく、発生過程・形態形成においても重要な役割を果たしていることを示している。


 hERGチャネル (SQT1の原因遺伝子)、KCNQ1チャネル (SQT2の原因遺伝子)、Kir2.1チャネル (SQT3の原因遺伝子)については、それぞれ変異による機能亢進でQT短縮症候群を起こすことも知られている。上述の通り、活動電位が短縮し、心電図のQT時間が短縮する不整脈の一種である(表2)。
 hERGチャネル (SQT1)、KCNQ1チャネル (SQT2)、Kir2.1チャネル (SQT3)については、それぞれ変異による機能亢進でQT短縮症候群を起こすことも知られている(表2)。上述の通り、活動電位が短縮し、心電図のQT時間が短縮する不整脈の一種である。


{| class="wikitable"
{| class="wikitable"
132行目: 132行目:


 [[バーター症候群]]は腎臓でのNa<sup>+</sup>とCl<sup>-</sup>の再吸収障害により生じる疾患であり、弱い内向き整流性カリウムチャネルである[[Kir1.1]] ([[ROMK1]])、塩素イオンチャネルである[[CLC-K2]]がその原因遺伝子として同定されている。塩素イオンチャネルはその他に[[CLC-K1]]が[[腎性尿崩症]]、[[CLC-5]]が[[デント病]]と呼ばれる疾患の原因遺伝子であることが知られている。
 [[バーター症候群]]は腎臓でのNa<sup>+</sup>とCl<sup>-</sup>の再吸収障害により生じる疾患であり、弱い内向き整流性カリウムチャネルである[[Kir1.1]] ([[ROMK1]])、塩素イオンチャネルである[[CLC-K2]]がその原因遺伝子として同定されている。塩素イオンチャネルはその他に[[CLC-K1]]が[[腎性尿崩症]]、[[CLC-5]]が[[デント病]]と呼ばれる疾患の原因遺伝子であることが知られている。
 膵β細胞におけるインスリン分泌は、KATPチャネルや電位依存性カルシウムチャネルなどによって制御されている。インスリン分泌の異常あるいはインスリン感受性の低下は糖尿病を引き起こす。最近のゲノムワイド関連解析により、QT延長症候群の原因遺伝子でもある電位依存性カリウムチャネルのKCNQ1が、日本人に多くみられる2型糖尿病の関連遺伝子として同定された<ref><pubmed>18711367</pubmed></ref><ref><pubmed>18711366</pubmed></ref>。興味深いことに2型糖尿病と相関の強いSNPはイントロン領域15に存在しており、アミノ酸の変異などを伴うものではない。しかしながらインスリン分泌が低下する傾向があることから、これも広義のチャネル病と考えることができる。KCNQ1による2型糖尿病発症のメカニズムについては現在のところ不明であり、今後の解明が待たれる。


==関連項目==
==関連項目==
47

回編集

案内メニュー