「血液脳関門」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:


 一方、[[wikipedia:Humphrey Ridley|Humphrey Ridley]]は、Ehrlichの実験から190年も遡った1695年に著書"The Anatomy of the Brain"<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「[[wikipedia:ja:水銀|水銀]]を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。
 一方、[[wikipedia:Humphrey Ridley|Humphrey Ridley]]は、Ehrlichの実験から190年も遡った1695年に著書"The Anatomy of the Brain"<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「[[wikipedia:ja:水銀|水銀]]を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。
[[Image:Tachikawa fig 1.jpg|thumb|400px|'''図1.血液脳関門(Blood-brain barrier, BBB)の解剖学的実体''']]
[[Image:Tachikawa fig 1.jpg|thumb|600px|'''図1.血液脳関門(Blood-brain barrier, BBB)の解剖学的実体''']]
 このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。 しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。
 このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。 しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。


 現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、[[wikipedia:ja:がん細胞|がん細胞]]において[[wikipedia:ja:Multiple drug resistance#Neoplastic_resistance|抗がん剤耐性因子]]として同定された[[P-糖タンパク]]([[P-glycoprotein]]/[[P-gp]]/[[ABCB1]]/[[MDR1]]/[[mdr1a]])が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、P-糖タンパク[[遺伝子欠損マウス]]を用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。
 現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、[[wikipedia:ja:がん細胞|がん細胞]]において[[wikipedia:ja:Multiple drug resistance#Neoplastic_resistance|抗がん剤耐性因子]]として同定された[[P-糖タンパク]]([[P-glycoprotein]]/[[P-gp]]/[[ABCB1]]/[[MDR1]]/[[mdr1a]])が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは「600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、P-糖タンパク[[遺伝子欠損マウス]]を用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。


 その後、P-糖タンパク以外に[[乳癌耐性タンパク質]]([[Breast Cancer Resistance Protein]], [[BCRP]]/[[ABCG2]]/[[MXR]]/[[ABCP]])<ref><pubmed> 15805252 </pubmed></ref> <ref><pubmed> 12438926 </pubmed></ref> <ref><pubmed> 15255930 </pubmed></ref> <ref name="ref112"><pubmed>16181433</pubmed></ref>や[[Multidrug Resistance-associated Protein 4]] ([[MRP4]]/[[ABCC4]])<ref><pubmed> 15218051 </pubmed></ref> <ref><pubmed> 19029202 </pubmed></ref> <ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。その他にもBBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。
 その後、P-糖タンパク以外に[[乳癌耐性タンパク質]]([[Breast Cancer Resistance Protein]], [[BCRP]]/[[ABCG2]]/[[MXR]]/[[ABCP]])<ref><pubmed> 15805252 </pubmed></ref> <ref><pubmed> 12438926 </pubmed></ref> <ref><pubmed> 15255930 </pubmed></ref> <ref name="ref112"><pubmed>16181433</pubmed></ref>や[[Multidrug Resistance-associated Protein 4]] ([[MRP4]]/[[ABCC4]])<ref><pubmed> 15218051 </pubmed></ref> <ref><pubmed> 19029202 </pubmed></ref> <ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。その他にもBBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。
93

回編集

案内メニュー