「血液脳関門」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
18行目: 18行目:


 その後、弟子の[[wikipedia:de:Edwin Goldman|Edwin Goldman]]が、[[wikipedia:Trypan_blue|トリパンブルー]](酸性色素)を脳室内に投与したところ、中枢神経は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。
 その後、弟子の[[wikipedia:de:Edwin Goldman|Edwin Goldman]]が、[[wikipedia:Trypan_blue|トリパンブルー]](酸性色素)を脳室内に投与したところ、中枢神経は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。
[[Image:Tachikawa fig 1.jpg|thumb|500px|'''図1.血液脳関門(Blood-brain barrier, BBB)の解剖学的実体''']]
 一方、[[wikipedia:Humphrey Ridley|Humphrey Ridley]]は、Ehrlichの実験から190年も遡った1695年に著書"The Anatomy of the Brain"<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「[[wikipedia:ja:水銀|水銀]]を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。


 一方、[[wikipedia:Humphrey Ridley|Humphrey Ridley]]は、Ehrlichの実験から190年も遡った1695年に著書"The Anatomy of the Brain"<ref>'''Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>を発表し、その中で「[[wikipedia:ja:水銀|水銀]]を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。
[[Image:Tachikawa fig 1.jpg|thumb|600px|'''図1.血液脳関門(Blood-brain barrier, BBB)の解剖学的実体''']]
 このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。 しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。
 このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。 しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。


35行目: 34行目:
== 構造と役割  ==
== 構造と役割  ==


[[Image:Tachikawa fig 2.jpg|thumb|600px|'''図2.血液脳関門(Blood-brain barrier, BBB)における物質輸送システム'''<br>SLCトランスポーター, Solute carrierファミリートランスポーター ; ABCトランスポーター, ATP-binding cassetteトランスポーター]]  
[[Image:Tachikawa fig 2.jpg|thumb|700px|'''図2.血液脳関門(Blood-brain barrier, BBB)における物質輸送システム'''<br>SLCトランスポーター, Solute carrierファミリートランスポーター ; ABCトランスポーター, ATP-binding cassetteトランスポーター]]  


 脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、[[クローディン]]、[[オクルディン]]などが知られている。一部の内皮細胞には、[[周皮細胞]](pericyte)が接着し、その大部分を[[星状膠細胞]]の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢神経への侵入や、脳内産生物質の流出を阻止している。
 脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、[[クローディン]]、[[オクルディン]]などが知られている。一部の内皮細胞には、[[周皮細胞]](pericyte)が接着し、その大部分を[[星状膠細胞]]の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の、内皮細胞間隙を介した非特異的な中枢神経への侵入や、脳内産生物質の流出を阻止している。


 ただし例外として、脳室周囲器官と呼ばれる、[[終板血管器官]]、[[脳弓下器官]]、[[交連下器官]]、[[視床下部]][[正中隆起]]、[[松果体]]、[[下垂体後葉]]、[[最終野]]などの領域では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、Goldmanがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。
 ただし例外として、脳室周囲器官と呼ばれる、[[終板血管器官]]、[[脳弓下器官]]、[[交連下器官]]、[[視床下部]][[正中隆起]]、[[松果体]]、[[下垂体後葉]]、[[最終野]]などの領域では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、Goldmanがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。
93

回編集

案内メニュー