「カルモジュリン」の版間の差分

ナビゲーションに移動 検索に移動
91行目: 91行目:
|colspan="2"|[[熱ショックタンパク質70/90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|colspan="2"|[[熱ショックタンパク質70/90]]||<ref><pubmed> 3782106 </pubmed></ref><ref><pubmed>2154682 </pubmed></ref>
|}
|}
 こうした様々なタンパク質と結合し、その活性や機能を制御することがカルモジュリンの機能であり、脳や神経細胞においては、、シナプス可塑性とその誘導に関わる細胞内シグナルの伝達<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>  10731148</pubmed></ref>、記憶・学習<ref><pubmed> 1321493</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>をはじめ、様々な機能の中心的役割を果たす。また、[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。
 また、カルモジュリンは[[リン酸化]]<ref><pubmed>6621532</pubmed></ref>や[[糖化]]<ref><pubmed>2541779</pubmed></ref>、[[メチル化]]<ref name=ref10 />など[[翻訳後修飾]]を受け、機能を調節することが知られている<ref><pubmed>1314563</pubmed></ref><ref><pubmed>9572870</pubmed></ref>。


 カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通してのシナプス可塑性や記憶・学習の制御に関して不可欠な役割を果たしている。また、神経入力のパターンに応じて様々なターゲットの酵素の中から、異なる組み合わせで酵素を活性化し、状況に応じて適切な神経細胞機能を発現していると考えられている。例えば、海馬CA1領域における長期増強や長期抑圧はNMDA受容体の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。カルモジュリンの脳内での主要なターゲットであるCaMKIIαは、海馬のシェーファー側枝からCA1錐体細胞への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαのノックアウトマウスや点変異導入マウスでは海馬依存的な空間学習に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。同様にカルモジュリンによって活性化されるアデニル酸シクラーゼ1、8やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や遺伝子改変動物実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。こうした変化を引き起こす分子・細胞生物学的なプロセスとしては、シナプスの構造の変化、細胞骨格やタンパク質の再構築、新規の遺伝子発現が上げられ、カルモジュリンはこうしたプロセスに関わっている。最近ではCa<sup>2+</sup>流入に伴うスパインの構造的可塑性の誘導に関わることや<ref><pubmed>15190253 </pubmed></ref>、この過程における種々の酵素の活性化が報告されている<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>
 脳機能において、カルモジュリンは、そのターゲットとなるCaMKII、カルシニューリン、アデニル酸シクラーゼなどの下流のエフェクター酵素の制御を通してのシナプス可塑性や記憶・学習の制御に関して不可欠な役割を果たしている。例えば、海馬CA1領域における長期増強や長期抑圧はNMDA受容体の活性化によりCa<sup>2+</sup>が流入し、カルモジュリンと結合することで下流の酵素を活性化して引き起こされる。カルモジュリンの脳内での主要なターゲットであるCaMKIIαは、海馬のシェーファー側枝からCA1錐体細胞への長期増強に関わることがが報告されており<ref><pubmed> 2847049</pubmed></ref><ref><pubmed>2549423 </pubmed></ref><ref><pubmed>1378648 </pubmed></ref>、CaMKIIαのノックアウトマウスや点変異導入マウスでは海馬依存的な空間学習に異常がみられる<ref><pubmed> 1321493</pubmed></ref><ref><pubmed>9452388 </pubmed></ref>。同様にカルモジュリンによって活性化されるアデニル酸シクラーゼ1、8やカルシニューリンもシナプス可塑性や記憶・学習に関与することが薬理学的実験や遺伝子改変動物実験などによって報告されている<ref><pubmed> 7515479 </pubmed></ref><ref><pubmed>10200317 </pubmed></ref><ref><pubmed>10482244</pubmed></ref><ref><pubmed>11733061 </pubmed></ref>。こうした電気生理学的・行動学的な変化を引き起こす分子・細胞生物学的なプロセスとして、カルモジュリンはCa<sup>2+</sup>流入に伴うスパインの構造的可塑性の誘導<ref><pubmed>15190253 </pubmed></ref><ref><pubmed>15572107</pubmed></ref><ref><pubmed>23269840</pubmed></ref>やアクチン細胞骨格の再構築<ref><pubmed>18341992</pubmed></ref><ref><pubmed>17404223</pubmed></ref>、種々の酵素の活性化<ref><pubmed> 26139370 </pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref><pubmed> 23602566 </pubmed></ref>やCREBを介した新規遺伝子発現<ref><pubmed>  8980227</pubmed></ref><ref><pubmed>19116276</pubmed></ref><ref><pubmed> 25277455 </pubmed></ref>に関わることが示されている。また、Ca2+流入に伴うカルモジュリン依存的な酵素の活性化は均等に起こるのではなく、神経入力のパターンに応じて異なる強弱で活性化され、状況に応じて適切な神経細胞機能を発現していると考えられている。


 また、カルモジュリンは記憶・学習といった成体における脳機能だけではなく、神経突起形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、軸索伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達にも関わっており、非常に重要な機能を果たしている。
 また、カルモジュリンは記憶・学習といった成体における脳機能だけではなく、神経突起形成<ref><pubmed> 12873385 </pubmed></ref><ref><pubmed>17553424  </pubmed></ref>、軸索伸展<ref><pubmed>15363394 </pubmed></ref><ref><pubmed>19864584 </pubmed></ref><ref><pubmed>24849351  </pubmed></ref>、シナプスの形成<ref><pubmed> 18184567 </pubmed></ref>などを通して、神経回路の発達にも関わっており、非常に重要な機能を果たしている。
88

回編集

案内メニュー