9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
17行目: | 17行目: | ||
[[ファイル:検出コイル.jpg|right|300px|thumb|'''図3.脳磁場を検出する各種コイルの形状''']] | [[ファイル:検出コイル.jpg|right|300px|thumb|'''図3.脳磁場を検出する各種コイルの形状''']] | ||
脳磁法とは、脳の神経活動に伴って発生する[[wikipedia:ja:| | 脳磁法とは、脳の神経活動に伴って発生する[[wikipedia:ja:磁場|磁場]]([[wikipedia:ja:磁界|磁界]])を頭皮上から完全非侵襲的に計測する技術である。1972年に初めてヒトの脳から生じる磁場信号の検出に成功<ref name=ref1><pubmed>5009769</pubmed></ref>した当時は単チャンネルであったが、その後多チャンネル化が急速に進み現在では100チャンネル以上のセンサーを有する多チャンネル全頭型装置(図2)が一般的になり、基礎研究及び臨床研究に用いられている。 | ||
==磁場の起源== | ==磁場の起源== | ||
神経細胞の興奮に伴う磁場変化は非常に微弱であるため、検出可能な信号を生み出すためには隣接する数万の細胞が同期して、なおかつ同じ向きの電流を発生させる必要がある<ref name=ref2><pubmed>16613883</pubmed></ref> | 神経細胞の興奮に伴う磁場変化は非常に微弱であるため、検出可能な信号を生み出すためには隣接する数万の細胞が同期して、なおかつ同じ向きの電流を発生させる必要がある<ref name=ref2><pubmed>16613883</pubmed></ref>。この条件を満たす信号源として、脳表面(もしくは皮質6層構造)に対して垂直に配列する[[錐体細胞]][[樹状突起]]における細胞内[[シナプス後電流]](excitatory postsynaptic current)がある。また錐体細胞の配列も重要である。脳磁計で計測できる信号は主に頭蓋表面に平行に流れる電流により生じる磁場であって、頭蓋表面に対して垂直方向の電流に関してはうまく記録できない。また、脳活動より生じた磁界の強さは距離の2乗に反比例して減衰するため脳深部の神経活動の記録は困難である。 | ||
==超伝導量子干渉計== | ==超伝導量子干渉計== | ||
通常脳の神経活動に伴う磁界変化は非常に微弱であるため、[[wikipedia:ja:超伝導量子干渉計|超伝導量子干渉計]]([[wikipedia:SQUIDs|SQUIDs]])を利用した高感度磁気センサーを用いる。記録の対象であるヒト脳磁場信号の大きさが10<sup>-14</sup> T(テスラ)から10<sup>-12</sup> T程度であるのに対して、例えば[[wikipedia:ja:地磁気|地磁気]]は10<sup>-5</sup> Tの大きさを有しているため外部環境磁場ノイズを軽減することが重要である(図1)。そのため、脳磁計は[[wikipedia:ja:透磁率|透磁率]]の大きい[[wikipedia:ja:合金|合金]]([[wikipedia:ja:パーマロイ|パーマロイ]])等で出来た磁気シールドルーム内に設置される。超伝導量子干渉計は常に[[wikipedia:ja:液体ヘリウム|液体ヘリウム]]で冷却する必要があるため、高性能の断熱容器(デュワー)内に格納されている。 | |||
脳磁場を検出コイルにはその形状から大きく分けてマグネトメーターとグラジオメーターがある(図3)。グラジオメーターに関しては軸方向型と平面方向型に大別できる。 | 脳磁場を検出コイルにはその形状から大きく分けてマグネトメーターとグラジオメーターがある(図3)。グラジオメーターに関しては軸方向型と平面方向型に大別できる。 | ||
:'''マグネトメーター''' | :'''マグネトメーター'''は1個のコイルで磁束を補足する。形状が単純であり遠方の信号源からの磁場も比較的良く計測できるという長所があるが、その反面外部からの[[wikipedia:ja:環境磁場|環境磁場]]の影響を受けやすい。 | ||
:'''軸方向型グラジオメーター'''は脳表に近い検出コイルと遠い補償コイルを逆向きに接続することで、両者の差分信号を計測する。近傍から発生する磁場は空間勾配が大きいため、脳から発生する磁場に関しては検出コイルのほうが補償コイルより大きい入力を受ける。それに対して遠隔に信号源を有する環境磁場に関しては、検出コイルと補償コイルにほぼ同様の影響を与える。その結果、軸方向型グラジオメーターは環境磁場の影響を軽減しながら脳からの磁場信号を計測することが出来る。 | :'''軸方向型グラジオメーター'''は脳表に近い検出コイルと遠い補償コイルを逆向きに接続することで、両者の差分信号を計測する。近傍から発生する磁場は空間勾配が大きいため、脳から発生する磁場に関しては検出コイルのほうが補償コイルより大きい入力を受ける。それに対して遠隔に信号源を有する環境磁場に関しては、検出コイルと補償コイルにほぼ同様の影響を与える。その結果、軸方向型グラジオメーターは環境磁場の影響を軽減しながら脳からの磁場信号を計測することが出来る。 | ||
34行目: | 34行目: | ||
==脳波との比較== | ==脳波との比較== | ||
ヒトの脳機能を非侵襲的に計測する他の方法として、頭皮上に装着された頭皮上電極から記録される「[[脳波]](electroencephalography: EEG)」がある。脳波は脳磁法と同じように非常に高い時間分解能で脳活動を計測することができるが、神経活動を導電率の異なる[[脳]]、[[脊髄液]]、[[骨]]、[[皮膚]]などを通して観察することになる。この信号源と記録電極の間にある[[sp:Volume_conduction|容積導体]](volume conduction)は不均一であり、脳波の空間分解能には限界がある。 | |||
しかしながら、脳磁場信号は神経細胞内電流を直接的に反映し、容積導体の影響をほとんど受けないため、脳波に比べて高い空間分解能を有しておりmm単位の正確度で信号源を推測することも可能である<ref name=ref3><pubmed>6190632</pubmed></ref>。すなわち頭蓋骨や表皮、脳脊髄液など[[wikipedia:ja:電気伝導率|電気伝導率]]が大きく異なる組成の影響を脳波のように受けないことが脳磁法の大きなメリットである<ref name=ref4><pubmed>9741752</pubmed></ref>。また脳波では、何らかの基準点([[wikipedia:ja:耳朶|耳朶]]電位基準や平均電位基準など)が必要となるが、脳磁法では基準点が必要ないこともメリットとなる。また脳波では記録電極と頭皮との接触が良くないと信号にノイズが混入してしまう。 | |||
脳磁法の短所としては、経済的な観点から見ると、計測装置が大型で高価であること、またSQUIDsを絶えず液体ヘリウムで冷却する必要が有るため維持費が高額になる点が挙げられる。神経活動計測に関しては、磁気センサーに対して垂直方向の電流を計測することが困難なこと、脳深部の神経活動計測が難しい点が挙げられる。また、計測中は頭の位値を固定しておく必要があるため、歩行中の脳活動や覚醒下の[[wikipedia:ja:乳児|乳児]]を計測することは困難である。 | |||
==脳磁法を用いた研究== | ==脳磁法を用いた研究== | ||
脳磁法は高い時間分解能で完全に非侵襲的に神経活動を計測することが出来るため、ヒトの基礎研究・臨床研究に利用されている。特に、[[一次聴覚野]]、[[一次体性感覚野]]、[[一次運動野]]など刺激に同期して活動し限局している信号源に対しては、刺激を繰り返し与え得られた波形を加算平均し、[[wikipedia:ja:等価電流双極子モデル|等価電流双極子モデル]]等を使うことによってかなり正確に特定することが可能である。しかしながら、複雑な[[認知]]行動課題などの場合は惹起された神経活動が分散しており外部刺激に正確に同期していない事が多いため信号源推定には注意を要する。 | |||
現在、脳磁図の臨床利用として主となるのは、[[てんかん]]患者におけるてんかん原性焦点や[[言語中枢]]等の重要な機能を担っている脳部位の同定である。脳磁法は脳波よりも空間分解能に優れており、脳磁法を使用することで脳波では捉えられなかったてんかん性脳活動を測定できることも報告されている<ref name=ref5><pubmed>15660769</pubmed></ref>。できるだけ重要な機能を担う脳部位を温存して術後の後遺症を減らし、正確にてんかん源性脳部位を切除するために手術前に脳磁法により脳機能計測を行うことは有効だと考えられている<ref name=ref6><pubmed> 24819913</pubmed></ref>。 | |||
神経科学分野における脳磁法の利用としては、その高い時間・空間分解能を活かして[[視覚]]・[[聴覚]]・[[体性感覚]]・[[痛覚]]などにより惹起された誘発脳磁場反応による脳機能マッピング<ref name=ref7><pubmed>9626677</pubmed></ref> <ref name=ref8><pubmed>2814476</pubmed></ref> <ref name=ref9><pubmed>1371444</pubmed></ref> <ref name=ref10><pubmed>2465889</pubmed></ref>や、[[顔認知]]や[[言語処理]]といったヒト脳における認知機能の解明<ref name=ref11><pubmed>12195430</pubmed></ref> <ref name=ref12><pubmed>12573727</pubmed></ref> <ref name=ref13><pubmed>17582338</pubmed></ref>、安静時における脳部位間の機能的結合に関する研究<ref name=ref14><pubmed> 21930901</pubmed></ref>などが行われている。 | |||
==その他のNeuroimaging法との比較== | ==その他のNeuroimaging法との比較== | ||
脳磁法の長所としては、[[positron emission tomography]]([[PET]])、[[Single Photon Emission Computed Tomography]]([[SPECT]])、[[functional Magnetic Resonance Imaging]]([[fMRI]])、[[Near Infra-Red Spectroscopy]]([[NIRS]])が血流や代謝などを指標に脳神経活動を間接的に計測しているのに対して、神経電気活動を非常に高い時間分解能で直接計測している点があげられる。また、脳磁法は生体への干渉を行わず観察するのみなので、他のNeuroimaging法とくらべても全くの非侵襲的計測法であるといえる。 | |||
短所としては脳磁法で神経活動の信号源を知るためには[[wikipedia:ja:逆問題|逆問題]]を解く必要があるが解が唯一ではない非適切な問題であるため、脳活動に関する前提的な知識を含んだモデルを用いて制限することで解を導き出す必要がある。PET、SPECT、fMRI、NIRSでは逆問題を解く必要はない。また脳磁法、NIRSは脳の深部の活動をうまく計測できないがPET、SPECT、fMRIでは可能である。 | |||
[[関連項目]] | |||
*[[positron emission tomography]] | |||
*[[Single Photon Emission Computed Tomography]] | |||
*[[functional Magnetic Resonance Imaging]] | |||
*[[Near Infra-Red Spectroscopy]] | |||
==参考文献== | ==参考文献== | ||
<references /> | <references /> |